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t. Domain-spe
i�
 internet portals are growing in popularity be
ausethey gather 
ontent from the Web and organize it for easy a

ess, retrieval andsear
h. For example, www.
ampsear
h.
om allows 
omplex queries by age, lo
ation,
ost and spe
ialty over summer 
amps. This fun
tionality is not possible withgeneral, Web-wide sear
h engines. Unfortunately these portals are diÆ
ult andtime-
onsuming to maintain. This paper advo
ates the use of ma
hine learningte
hniques to greatly automate the 
reation and maintenan
e of domain-spe
i�
Internet portals. We des
ribe new resear
h in reinfor
ement learning, informationextra
tion and text 
lassi�
ation that enables eÆ
ient spidering, the identi�
ationof informative text segments, and the population of topi
 hierar
hies. Using thesete
hniques, we have built a demonstration system: a portal for 
omputer s
ien
eresear
h papers. It already 
ontains over 50,000 papers and is publi
ly available atwww.
ora.justresear
h.
om. These te
hniques are widely appli
able to portal 
reationin other domains.Keywords: spidering, 
rawling, reinfor
ement learning, information extra
tion, hid-den Markov models, text 
lassi�
ation, naive Bayes, Expe
tation-Maximization,unlabeled data 1. Introdu
tionAs the amount of information on the World Wide Web grows, it be-
omes in
reasingly diÆ
ult to �nd just what we want. While general-purpose sear
h engines su
h as AltaVista and Google o�er quite useful
overage, it is often diÆ
ult to get high pre
ision, even for detailedqueries. When we know that we want information of a 
ertain type,or on a 
ertain topi
, a domain-spe
i�
 Internet portal 
an be a pow-erful tool. A portal is an information gateway that often in
ludes asear
h engine plus additional organization and 
ontent. Portals areoften, though not always, 
on
entrated on a parti
ular topi
. They
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Callum, Nigam, Rennie and Seymoreusually o�er powerful methods for �nding domain-spe
i�
 information.For example:� Camp Sear
h (www.
ampsear
h.
om) allows the user to sear
h forsummer 
amps for 
hildren and adults. The user 
an query andbrowse the system based on geographi
 lo
ation, 
ost, durationand other requirements.� LinuxStart (www.linuxstart.
om) provides a 
learinghouse for Lin-ux resour
es. It has a hierar
hy of topi
s and a sear
h engine overLinux pages.� Movie Review Query Engine (www.mrqe.
om) allows the user tosear
h for reviews of movies. Type a movie title, and it provideslinks to relevant reviews from newspapers, magazines, and individ-uals from all over the world.� Crafts Sear
h (www.bella-de
or.
om) lets the user sear
h web pagesabout 
rafts. It also provides sear
h 
apabilities over 
lassi�ed adsand au
tions of 
rafts, as well as a browseable topi
 hierar
hy.� Travel-Finder (www.travel-�nder.
om) allows the user to sear
hweb pages about travel, with spe
ial fa
ilities for sear
hing bya
tivity, 
ategory and lo
ation.Performing any of these sear
hes with a traditional, general-purposesear
h engine would be extremely tedious or impossible. For this rea-son, portals are be
oming in
reasingly popular. Unfortunately, howev-er, building these portals is often a labor-intensive pro
ess, typi
allyrequiring signi�
ant and ongoing human e�ort.This arti
le des
ribes the use of ma
hine learning te
hniques toautomate several aspe
ts of 
reating and maintaining portals. Thesete
hniques allow portals to be 
reated qui
kly with minimal e�ort andare suited for re-use a
ross many domains. We present new ma
hinelearning methods for spidering in an eÆ
ient topi
-dire
ted manner,extra
ting topi
-relevant information, and building a browseable topi
hierar
hy. These approa
hes are brie
y des
ribed in the following threeparagraphs.Every sear
h engine or portal must begin with a 
olle
tion of do
u-ments to index. A spider (or 
rawler) is an agent that traverses the Web,looking for do
uments to add to the 
olle
tion. When aiming to popu-late a domain-spe
i�
 
olle
tion, the spider need not explore the Webindis
riminantly, but should explore in a dire
ted fashion in order to�nd domain-relevant do
uments eÆ
iently. We set up the spidering taskin a reinfor
ement learning framework (Kaelbling, Littman, & Moore,
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hine Learning 31996), whi
h allows us to pre
isely and mathemati
ally de�ne optimalbehavior. This approa
h provides guidan
e for designing an intelligentspider that aims to sele
t hyperlinks optimally. It also indi
ates howthe agent should learn from delayed reward. Our experimental resultsshow that a reinfor
ement learning spider is twi
e as eÆ
ient in �ndingdomain-relevant do
uments as a baseline topi
-fo
used spider and threetimes more eÆ
ient than a spider with a breadth-�rst sear
h strategy.Extra
ting 
hara
teristi
 pie
es of information from the do
umentsof a domain-spe
i�
 
olle
tion allows the user to sear
h over these fea-tures in a way that general sear
h engines 
annot. Information extra
-tion, the pro
ess of automati
ally �nding 
ertain 
ategories of textualsubstrings in a do
ument, is well suited to this task. We approa
hinformation extra
tion with a te
hnique from statisti
al language mod-eling and spee
h re
ognition, namely hidden Markov models (Rabiner,1989). We learn model stru
ture and parameters from a 
ombination oflabeled and distantly-labeled data. Our model extra
ts �fteen di�erent�elds from spidered do
uments with 93% a

ura
y.Sear
h engines often provide a hierar
hi
al organization of materialsinto relevant topi
s; Yahoo is the prototypi
al example. Automati-
ally adding do
uments into a topi
 hierar
hy 
an be framed as atext 
lassi�
ation task. We present extensions to a probabilisti
 text
lassi�er known as naive Bayes (Lewis, 1998; M
Callum & Nigam,1998). The extensions redu
e the need for human e�ort in trainingthe 
lassi�er by using just a few keywords per 
lass, a 
lass hierar
hyand unlabeled do
uments in a bootstrapping pro
ess. Use of the result-ing 
lassi�er pla
es do
uments into a 70-leaf topi
 hierar
hy with 66%a

ura
y|performan
e approa
hing human agreement levels.The remainder of the paper is organized as follows. We des
ribethe design of an Internet portal built using these te
hniques in thenext se
tion. The following three se
tions des
ribe the ma
hine learningresear
h introdu
ed above and present their experimental results. Wethen dis
uss related work and present 
on
lusions.2. The Cora PortalWe have brought all the above-des
ribed ma
hine learning te
hniquestogether in a demonstration system: an Internet portal for 
omputers
ien
e resear
h papers, whi
h we 
all \Cora." The system is publi
lyavailable at www.
ora.justresear
h.
om. Not only does it provide key-word sear
h fa
ilities over 50,000 
olle
ted papers, it also pla
es thesepapers into a 
omputer s
ien
e topi
 hierar
hy, maps the 
itation linksbetween papers, provides bibliographi
 information about ea
h paper,
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Figure 1. A s
reen shot of the Cora homepage (www.
ora.justresear
h.
om). It hasa sear
h interfa
e and a hierar
hy interfa
e.and is growing daily. Our hope is that in addition to providing datasetsand a platform for testing ma
hine learning resear
h, this sear
h enginewill be
ome a valuable tool for other 
omputer s
ientists, and will
omplement similar e�orts, su
h as CiteSeer (www.s
ien
eindex.
om)and the Computing Resear
h Repository (xxx.lanl.gov/ar
hive/
s).We provide three ways for a user to a

ess papers in the repository.The �rst is through a topi
 hierar
hy, similar to that provided by Yahoobut 
ustomized spe
i�
ally for 
omputer s
ien
e resear
h. It is availableon the homepage of Cora, as shown in Figure 1. This hierar
hy washand-
onstru
ted and 
ontains 70 leaves, varying in depth from oneto three. Using text 
lassi�
ation te
hniques, ea
h resear
h paper isautomati
ally pla
ed into a topi
 leaf. The topi
 hierar
hy may betraversed by following hyperlinks from the homepage. Ea
h leaf in thetree 
ontains a list of papers in that resear
h topi
. The list 
an besorted by the number of referen
es to ea
h paper, or by the degree to
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Figure 2. A s
reen shot of the query results page of the Cora sear
h engine.Extra
ted paper titles, authors and abstra
ts are provided at this level.whi
h the paper is a strong \seminal" paper or a good \survey" paper,as measure by the \authority" and \hub" s
ore a

ording to the HITSalgorithm (Kleinberg, 1999; Chang, Cohn, & M
Callum, 1999).All papers are indexed into a sear
h engine available through astandard sear
h interfa
e. It supports 
ommonly-used sear
hing syntaxfor queries, in
luding +, -, and phrase sear
hing with "". It also allowssear
hes restri
ted to extra
ted �elds, su
h as authors and titles, as inauthor:knuth. Query response time is usually less than a se
ond. Theresults of sear
h queries are presented as in Figure 2. While we presentno experimental eviden
e that the ability to restri
t sear
h to spe
i�
extra
ted �elds improves sear
h performan
e, it is generally a

epted
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Figure 3. A s
reen shot of a details page of the Cora sear
h engine. At this level,all extra
ted information about a paper is displayed, in
luding the 
itation linking,whi
h are hyperlinks to other details pages.that su
h 
apability in
reases the users' ability to eÆ
iently �nd whatthey want (Bikel, Miller, S
hwartz, & Weis
hedel, 1997).From both the topi
 hierar
hy and the sear
h results pages, links areprovided to \details" pages for individual papers. Ea
h of these pagesshows all the relevant information for a single paper, su
h as title and
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hine Learning 7authors, links to the a
tual posts
ript paper, and a 
itation map that
an be traversed either forwards or ba
kwards. One example of this isshown in Figure 3. The 
itation map allows a user to �nd details on
ited papers, as well as papers that 
ite the detailed paper. The 
ontextof ea
h referen
e is also provided, giving a brief summary of how thereferen
e is used by the detailed paper. We also provide automati
ally
onstru
ted BibTeX entries, a me
hanism for submitting new papersand web sites for spidering, and general Cora information links.Our web logs show that 40% of the page requests are for sear
hes,27% for details pages (whi
h show a paper's in
oming and outgoing ref-eren
es), 30% are for the topi
 hierar
hy nodes and 3% are for BibTeXentries. The logs show that our visitors use the ability to restri
t sear
hto spe
i�
 extra
ted �elds, but not often; about 3% of queries 
ontain�eld spe
i�ers; it might have been higher if the front page indi
atedthat this feature were available.The 
olle
tion and organization of the resear
h papers for Cora isautomated by drawing upon the ma
hine learning te
hniques des
ribedin this paper. The �rst step of building any portal is the 
olle
tion ofrelevant information from the Web. A spider 
rawls the Web, startingfrom the home pages of 
omputer s
ien
e departments and laboratoriesand looks for resear
h papers. Using reinfor
ement learning, our spidereÆ
iently explores the Web, following links that are more likely tolead to resear
h papers, and 
olle
ts all posts
ript do
uments it �nds.1The details of this spidering are des
ribed in Se
tion 3. The posts
riptdo
uments are then 
onverted into plain text by running them throughour own modi�ed version of the publi
ly-available utility ps2as
ii. Ifthe do
ument 
an be reliably determined to have the format of a re-sear
h paper (i.e. by mat
hing regular expressions for the headers of anAbstra
t or Introdu
tion se
tion and a Referen
e se
tion), it is addedto Cora. Using this system, we have found 50,000 
omputer s
ien
eresear
h papers, and are 
ontinuing to spider for even more.The beginning of ea
h paper is passed through a learned informationextra
tion system that automati
ally �nds the title, authors, aÆliationsand other important header information. Additionally, the bibliographyse
tion of ea
h paper is lo
ated, individual referen
es identi�ed, andea
h referen
e automati
ally broken down into the appropriate �elds,su
h as author, title, journal, and date. This information extra
tionpro
ess is des
ribed in Se
tion 4.Using the extra
ted information, referen
e and paper mat
hes aremade|grouping 
itations to the same paper together, and mat
hing1 Most 
omputer s
ien
e papers are in posts
ript format, though we are addingmore formats, su
h as PDF.
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itations to papers in Cora. Of 
ourse, many papers that are 
iteddo not appear in the repository. The mat
hing algorithm pla
es a new
itation into a group if it's best word-level mat
h is to a 
itation alreadyin that group, and the mat
h s
ore is above a threshold; otherwise, that
itation 
reates a new group. The word-level mat
h s
ore is determinedusing the lengths of the 
itations, and the words o

urring in high-
ontent �elds (e.g. authors, titles, et
.). This mat
hing pro
edure is verysimilar to the Baseline Simple method des
ribed by Giles, Bolla
ker,and Lawren
e (1998). Finally, ea
h paper is pla
ed into the 
omputers
ien
e hierar
hy using a text 
lassi�
ation algorithm. This pro
ess isdes
ribed in Se
tion 5.The sear
h engine is 
reated from the results of the informationextra
tion. Ea
h resear
h paper is represented by the extra
ted title,author, institution, referen
es, and abstra
t. Contiguous alphanumeri

hara
ters of these segments are 
onverted into word tokens. No sto-plists or stemming are used. At query time, result mat
hes are rankedby the weighted log of term frequen
y, summed over all query terms.The weight is the inverse of the word frequen
y in the entire 
orpus.When a phrase is in
luded, it is treated as a single term. No queryexpansion is performed. Papers are added to the index in
rementally,and the indexing time for ea
h do
ument is negligible.These steps 
omplete the pro
essing of the data ne
essary to buildCora. The 
reation of other Internet portals also involves dire
ted spi-dering, information extra
tion, and 
lassi�
ation. The ma
hine learningte
hniques des
ribed in the following se
tions are widely appli
able tothe 
onstru
tion and maintenan
e of any Internet portal.3. EÆ
ient SpideringSpiders are agents that explore the hyperlink graph of the Web, oftenfor the purpose of �nding do
uments with whi
h to populate a portal.Extensive spidering is the key to obtaining high 
overage by the majorWeb sear
h engines, su
h as AltaVista, Google and Ly
os. Sin
e thegoal of these general-purpose sear
h engines is to provide sear
h 
apa-bilities over the Web as a whole, they aim to �nd as many distin
t webpages as possible. Su
h a goal lends itself to strategies like breadth-�rstsear
h. If, on the other hand, the task is to populate a domain-spe
i�
portal, then an intelligent spider should try to avoid hyperlinks thatlead to o�-topi
 areas, and 
on
entrate on links that lead to do
umentsof interest.In Cora, eÆ
ient spidering is a major 
on
ern. The majority ofthe pages in 
omputer s
ien
e department web sites do not 
ontain
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tion of Internet Portals with Ma
hine Learning 9links to resear
h papers, but instead are about 
ourses, homework,s
hedules and admissions information. Avoiding whole bran
hes andneighborhoods of departmental web graphs 
an signi�
antly improveeÆ
ien
y and in
rease the number of resear
h papers found given a�nite amount of 
rawling time. We use reinfor
ement learning as thesetting for eÆ
ient spidering in order to provide a formal framework.As in mu
h other work in reinfor
ement learning, we believe that thebest approa
h to this problem is to formally de�ne the optimal solutionthat a spider should follow and then to approximate that poli
y as bestas possible. This allows us to understand (1) exa
tly what has been
ompromised, and (2) dire
tions for further work that should improveperforman
e.Several other systems have also studied spidering, but without aframework de�ning optimal behavior.Ara
hnid (Men
zer, 1997) main-tains a 
olle
tion of 
ompetitive, reprodu
ing and mutating agentsfor �nding information on the Web. Cho, Gar
ia-Molina, and Page(1998) suggest a number of heuristi
 ordering metri
s for 
hoosingwhi
h link to 
rawl next when sear
hing for 
ertain 
ategories of webpages. Chakrabarti, van der Berg, and Dom (1999) produ
e a spiderto lo
ate do
uments that are textually similar to a set of trainingdo
uments. This is 
alled a fo
used 
rawler. This spider requires onlya handful of relevant example pages, whereas we also require exampleWeb graphs where su
h relevant pages are likely to be found. However,with this additional training data, our framework expli
itly 
apturesknowledge of future reward|the fa
t that pages leading toward a topi
page may have text that is drasti
ally di�erent from the text in topi
pages.Additionally, there are other systems that use reinfor
ement learn-ing for non-spidering Web tasks. WebWat
her (Joa
hims, Freitag, &Mit
hell, 1997) is a browsing assistant that a
ts mu
h like a fo
used
rawler, re
ommending links that dire
t the user toward a "goal." Web-Wat
her also uses aspe
ts of reinfor
ement learning to de
ide whi
hlinks to sele
t. However, instead of approximating a Q fun
tion forea
h URL, WebWat
her approximates a Q fun
tion for ea
h word andthen, for ea
h URL, adds the Q fun
tions that 
orrespond to the URLand the user's interests. In 
ontrast, we approximate a Q fun
tion forea
h URL using regression by 
lassi�
ation. LASER (Boyan, Freitag, &Joa
hims, 1996) is a sear
h engine that uses a reinfor
ement learningframework to take advantage of the inter
onne
tivity of the Web. Itpropagates reward values ba
k through the hyperlink graph in order totune its sear
h engine parameters. In Cora, similar te
hniques are usedto a
hieve more eÆ
ient spidering.
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Callum, Nigam, Rennie and SeymoreThe spidering algorithm we present here is unique in that it rep-resents and takes advantage of future reward|learning features thatpredi
t an on-topi
 do
ument several hyperlink hops away from the
urrent hyperlink. This is parti
ularly important when reward is s-parse, or in other words, when on-topi
 do
uments are few and farbetween. Our experimental results bear this out. In a domain withoutsparse rewards, our reinfor
ement learning spider that represents futurereward performs about the same as a fo
used spider (both out-performa breadth-�rst sear
h spider by three-fold). However, in another do-main where reward is more sparse, expli
itly representing future rewardin
reases eÆ
ien
y over a fo
used spider by a fa
tor of two.3.1. Reinfor
ement LearningThe term \reinfor
ement learning" refers to a framework for learningoptimal de
ision making from rewards or punishment (Kaelbling et al.,1996). It di�ers from supervised learning in that the learner is nevertold the 
orre
t a
tion for a parti
ular state, but is simply told howgood or bad the sele
ted a
tion was, expressed in the form of a s
alar\reward." We des
ribe this framework, and de�ne optimal behavior inthis 
ontext.A task is de�ned by a set of states, s 2 S, a set of a
tions, a 2 A,a state-a
tion transition fun
tion (mapping state/a
tion pairs to theresulting state), T : S � A ! S, and a reward fun
tion (mappingstate/a
tion pairs to a s
alar reward), R : S � A ! <. At ea
h timestep, the learner (also 
alled the agent) sele
ts an a
tion, and then asa result is given a reward and transitions to a new state. The goal ofreinfor
ement learning is to learn a poli
y, a mapping from states toa
tions, � : S ! A, that maximizes the sum of its reward over time. Themost 
ommon formulation of \reward over time" is a dis
ounted sum ofrewards into an in�nite future. We use the in�nite-horizon dis
ountedmodel where reward over time is a geometri
ally dis
ounted sum inwhi
h the dis
ount , 0 � 
 < 1, devalues rewards re
eived in the future.A

ordingly, when following poli
y �, we 
an de�ne the value of ea
hstate to be: V �(s) = 1Xt=0 
trt; (1)where rt is the reward re
eived t time steps after starting in state s.The optimal poli
y, written �?, is the one that maximizes the value,V �(s), over all states s.In order to learn the optimal poli
y, we learn its value fun
tion, V ?,and its more spe
i�
 
orrelate, 
alled Q. Let Q?(s; a) be the value of
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hine Learning 11sele
ting a
tion a from state s, and thereafter following the optimalpoli
y. This is expressed as:Q?(s; a) = R(s; a) + 
V ?(T (s; a)): (2)We 
an now de�ne the optimal poli
y in terms of Q? by sele
tingfrom ea
h state the a
tion with the highest expe
ted future reward:�?(s) = argmaxaQ?(s; a). The seminal work by Bellman (1957) showsthat the optimal poli
y 
an be found straightforwardly by dynami
programming.3.2. Spidering as Reinfor
ement LearningAs an aid to understanding how reinfor
ement learning relates to spi-dering, 
onsider the 
ommon reinfor
ement learning task of a mouseexploring a maze to �nd several pie
es of 
heese. The mouse 
an performa
tions for moving among the grid squares of the maze. The mousere
eives a reward for �nding ea
h pie
e of 
heese. The state is both theposition of the mouse and the lo
ations of the 
heese pie
es remainingto be 
onsumed (sin
e the 
heese 
an only be 
onsumed and providereward on
e). Note that the mouse only re
eives immediate rewardfor �nding a maze square 
ontaining 
heese, but that in order to a
toptimally it must 
hoose a
tions based on future rewards as well.In the spidering task, the on-topi
 do
uments are immediate re-wards, like the pie
es of 
heese. The a
tions are following a parti
ularhyperlink. The state is the set of on-topi
 do
uments that remain to be
onsumed, and the set of URLs that have been en
ountered.2 The statedoes not in
lude the 
urrent \position" of the agent sin
e a 
rawler 
ango next to any URL it has previously en
ountered. The number ofa
tions is large and dynami
, in that it depends on whi
h pages thespider has visited so far.The most important features of topi
-spe
i�
 spidering that makereinfor
ement learning an espe
ially good framework for de�ning theoptimal solution are: (1) performan
e is measured in terms of rewardover time be
ause it is better to lo
ate on-topi
 do
uments sooner,given time limitations, and (2) the environment presents situations withdelayed reward, in that on-topi
 do
uments may be several hyperlinktraversals away from the 
urrent 
hoi
e point.2 It is as if the mouse 
an jump to any square, as long as it has already visited abordering square. Thus the state is not a single position, but the position and shapeof the boundary.
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ti
al ApproximationsThe problem now is how to apply reinfor
ement learning to spideringin su
h a way that it 
an be pra
ti
ally solved. Unfortunately, the statespa
e is huge: exponential in the number of on-topi
 do
uments on theWeb. The a
tion spa
e is also large: the number of unique hyperlinksthat the spider 
ould possibly visit.In order to make learning feasible we use value fun
tion approxi-mation. That is, we train a learning algorithm that generalizes a
rossstates and is able to predi
t the Q-value of a previously unseen s-tate/a
tion pair. The spider that emerges from this training pro
edureeÆ
iently explores new web graphs by estimating the expe
ted futurereward asso
iated with new hyperlinks using this fun
tion approxi-mator. The state spa
e is so unusually large, however, that fun
tionapproximation 
annot support dynami
 programming. Thus, like inwork by Kearns, Mansour, and Ng (2000), we sample from the statespa
e, and 
al
ulate a sum of expe
ted future reward with an expli
itroll-out solution using a model. The use of roll outs for poli
y evaluationis also used in TD-1 (Sutton, 1988).We gather training data and build a model 
onsisting of all the pagesand hyperlinks found by exhaustively spidering a few web sites.3 Byknowing the 
omplete web graph of the training data, we 
an easily de-�ne a near-optimal poli
y by automati
 inspe
tion of the web graph. Wethen exe
ute that poli
y for a �nite number of steps from state/a
tionpairs for some subset of the states; these exe
utions result in a sequen
eof immediate rewards. We then assign to these state/a
tion pairs theQ-value 
al
ulated as the dis
ounted sum of the reward sequen
e. Thesetriplets of state, a
tion and Q-value be
ome the training data for ourvalue fun
tion approximation.In the next two sub-se
tions we des
ribe the near-optimal poli
y onknown web graphs, and the value fun
tion approximation.3.4. Near-Optimal Poli
y on Known Hyperlink GraphsGiven full knowledge of a hyperlink graph built by exhaustively spi-dering a web site, it is straightforward to spe
ify a near-optimal poli
y.The poli
y must 
hoose to follow one hyperlink from among all theunfollowed hyperlinks that it knows about so far, the \fringe." At ea
htime step, our near-optimal poli
y sele
ts from the fringe the a
tionthat follows the hyperlink on the path to the 
losest immediate reward.For example, in Figure 4, the poli
y would 
hoose a
tion A at time 03 This is the o�-line version of our algorithm; the on-line version would be a formof poli
y improvement using roll-outs, as in Tesauro and Galperin (1997).
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A B

Figure 4. A representation of spidering spa
e where arrows are hyperlinks and nodesare web do
uments. The hexagonal node represents an already-explored node; the
ir
ular nodes are unexplored. Filled-in 
ir
les denote the presen
e of immediatereward (target pages). When a spider is given the 
hoi
e between an a
tion thatprovides immediate reward and one that provides future reward, the spider alwaysa
hieves the maximum dis
ounted reward by 
hoosing the immediate reward �rst.By �rst following A, the spider a
hieves rewards in the sequen
e 10111. . . . FollowingB �rst only delays the �rst reward: 01111. . . .be
ause it provides a reward at time 1, where 
hoosing a
tion B woulddelay the �rst immediate reward until time 2.This poli
y 
losely approximates the optimal poli
y in 
ases whereall non-zero immediate rewards have the same value. Figure 4 givesan example of a 
ommon spidering situation where our near-optimalpoli
y makes the optimal de
ision. Here, the spider is given the option oftaking a
tions A and B. Sin
e A yields reward sooner, the near-optimalpoli
y 
hooses this a
tion. This near-optimal poli
y often makes theright de
ision. In fa
t, in the 
ase that 
 � 0:5, the only 
ase where thepoli
y may make a mistake is when two or more a
tions provide the �rstimmediate reward equidistantly from the fringe. The heuristi
 poli
yarbitrarily sele
ts one of these; in 
ontrast, the optimal poli
y wouldsele
t the hyperlink leading to the most additional reward, beyond justthe �rst one.We 
hoose to begin with a near-optimal poli
y be
ause simply spe
-ifying the optimal poli
y on a Web graph is a non-trivial optimizationproblem.We also believe that dire
tly approximating the optimal poli
ywould provide little pra
ti
al bene�t, sin
e our near-optimal poli
y
aptures the optimal poli
y in many of the situations that a spideren
ounters.3.5. Value Fun
tion ApproximationUsing the above poli
y, the training pro
edure generates state/a
tion/Q-value triples. As in most reinfor
ement learning solutions to problems
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Callum, Nigam, Rennie and Seymorewith large state spa
es, these triples then a
t as training data for su-pervised training of an approximation to the value fun
tion, V (s), or aQ fun
tion. To make this approximation we must spe
ify whi
h subsetof states we use for training, the feature representation of a state anda
tion, and the underlying learning algorithm to map features to Q-values. We 
hoose a simple but intuitive set of states to use as training,map a state and hyperlink a
tion to a set of words o

urring around thehyperlink, and use naive Bayes to map words into a predi
ted Q-value.For the experiments in this paper, we 
al
ulate the value of ournear-optimal poli
y for all states where the fringe 
ontains exa
tly onehyperlink. Thus, for ea
h known hyperlink a, we estimate Q(fag; a)by roll-out to generate training data. Considering a larger set of s-tate/a
tion pairs might make our spidering framework impra
ti
al|taking advantage of a larger set would ne
essitate re
al
ulatingQ valuesfor every hyperlink that the spider follows.The features of a state/a
tion pair are a set of words. Given a hy-perlink a
tion a, the features are the neighboring words of a on all pre-viously visited pages in state s where hyperlink a o

urs.4 The pre
isede�nition of neighboring text is given for ea
h data set is Se
tion 3.6,but approximately it means words o

urring near to the hyperlink onthe page where it o

urs. In many 
ases a unique hyperlink o

urson only one page. However, it is not un
ommon that multiple pages
ontain the same hyperlink; in these 
ases we use the words on ea
h ofthese multiple pages as our features.Our value fun
tion approximator takes as inputs these words andgives an estimate of the Q-value. We perform this mapping by 
astingthis regression problem as 
lassi�
ation (Torgo & Gama, 1997). Wedis
retize the dis
ounted sum of future reward values of our trainingdata into bins and treat ea
h bin as a 
lass. For ea
h state/a
tion pairwe 
al
ulate the probabilisti
 
lass membership of ea
h bin using naiveBayes (whi
h is des
ribed in se
tion 5.2.1). Then the Q-value of a new,unseen hyperlink is estimated by taking a weighted average of ea
hbins' Q-value, using the probabilisti
 
lass memberships as weights.All of the approximations that we have made are fo
used on ensuringthat our framework is pra
ti
al. The training phase has 
omputational
omplexity O(N), whereas the spidering phase is O(N logN) (N is thenumber of hyperlinks). The logN term a

ounts for the need to sort theQ values of those hyperlinks on the fringe. This term 
ould be eliminat-ed through an approximation su
h as dis
retizing the Q-value spa
e.Hen
e, our framework does not signi�
antly add to the 
omputational4 Note that we are ignoring the part of the state that spe
i�es whi
h on-topi
do
uments have already been 
onsumed.
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omplexity of spidering. An eÆ
ient implementation should �nd Webpage downloads to be the main bottlene
k.3.6. Experimental ResultsIn this se
tion we provide empiri
al eviden
e that using reinfor
ementlearning to guide the sear
h of a spider in
reases its eÆ
ien
y. We usetwo datasets, the Resear
h Paper dataset, whi
h is used in the Coraportal, and also the Corporate OÆ
ers dataset, where the goal is tolo
ate spe
i�
 
ompany information.3.6.1. Datasets and Proto
olIn August 1998 we 
ompletely mapped the do
uments and hyperlinksof the web sites of 
omputer s
ien
e departments at Brown University,Cornell University, University of Pittsburgh and University of Texas.They in
lude 53,012 do
uments and 592,216 hyperlinks. These webpages make up the Resear
h Paper dataset. The target pages (forwhi
h a reward of 1 is given) are the 2,263 
omputer s
ien
e resear
hpapers. They are identi�ed with 95% pre
ision by a simple hand-
odedalgorithm that lo
ates abstra
ts and referen
e se
tions in posts
ript�les with regular expressions. We perform a series of four test/trainsplits, in whi
h the data from three universities is used to train a spiderthat is then tested on the fourth. The training data is used for valuefun
tion approximation, as des
ribed in Se
tion 3.5. In this dataset, theneighboring text for a URL is de�ned as the full text of the page wherethe URL is found with the an
hor and nearby text marked spe
ially.Ea
h spidering run begins at the homepage of the test department. Wereport average performan
e a
ross the four test sets.In De
ember 1998, we 
olle
ted the Corporate OÆ
ers dataset, 
on-sisting of the 
omplete web sites of 26 
ompanies, totaling 6,643 webpages. The targets in this dataset are the web pages that in
lude infor-mation about oÆ
ers and dire
tors of the 
ompany. One su
h page waslo
ated by hand for ea
h 
ompany, giving a total of 26 target pages.We perform 26 test/train splits where ea
h 
ompany's web site formsa test set, while the others are used for training. In this dataset, valuefun
tion approximation pro
eeds by de�ning the neighboring text to beheader and title words, the an
hor text, portions of the URL itself (e.g.dire
tory and �le names) and a small set of words immediately beforeand after the hyperlink. Ea
h spidering run begins at the homepage ofthe 
orresponding test 
ompany.We present results of two di�erent reinfor
ement learning spidersand 
ompare them to a breadth-�rst-sear
h spider. The �rst, Fo
useduses 
 = 0, and 
losely mimi
s what is known as a \fo
used 
rawler."
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Figure 5. The performan
e of di�erent spidering strategies, averaged over fourtest/train splits. The reinfor
ement learning spiders �nd target do
uments signi�-
antly faster than traditional breadth-�rst sear
h.(Chakrabarti et al., 1999) This spider employs a binary 
lassi�er thatdistinguishes between immediately relevant text and other text. Futureuses 
 = 0:5 and makes use of future reward, representing the Q-fun
tion with a more �nely-dis
riminating multi-bin 
lassi�er. Here,training data is partitioned into bins based on the Q-value of ea
hhyperlink. We found that a 3-bin 
lassi�er performed best on the Re-sear
h Paper data while a 4-bin 
lassi�er yielded the best results onthe Corporate OÆ
ers data.3.6.2. Finding Resear
h PapersResults for the Resear
h Paper dataset are depi
ted in Figures 5 and6, 
omparing the three-bin Future spider against the two baselines. Thenumber of resear
h papers found is plotted against the number of pagesvisited, averaged over all four universities.At all times during their sear
h, both the Future and Fo
used spiders�nd signi�
antly more resear
h papers than breadth-�rst sear
h. Onemeasure of performan
e is the number of hyperlinks followed before75% of the resear
h papers are found. Both reinfor
ement learners aresigni�
antly more eÆ
ient, requiring exploration of less than 16% of the
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Figure 6. The performan
e of di�erent spidering strategies during the initial stagesof ea
h spidering run. Here, the Future spider performs best, be
ause identifyingfuture rewards are 
ru
ial.hyperlinks; in 
omparison, Breadth-�rst requires 48%. This representsa fa
tor of three in
rease in spidering eÆ
ien
y.However, Future does not always perform as well as or better thanFo
used. In Figure 5, after the �rst 50% of the papers are found theFo
used spider performs slightly better than Future. This is be
ausethe system has un
overed many links that will give immediate rewardif followed, and the Fo
used spider re
ognizes them more a

urately. Infuture work we are investigating te
hniques for improving 
lassi�
ationto re
ognize these immediate rewards when the spider uses the largernumber of bins required for regression with future reward.We hypothesize that modeling future reward is more importantwhen immediate reward is more sparse. While there is not signi�
antseparation between Fo
used and Future through most of the run, theearly stages of the run provide a spe
ial environment; reward is verysparse, as most resear
h papers lie several hyperlinks away from areasthe spider has explored; subsequently, few immediate reward a
tionsare available. Figure 6 shows the average performan
e of the spidersduring the initial stages of spidering. We indeed see that Future, aspider whi
h takes advantage of future rewards knowledge, does betterthan Fo
used. On average the Fo
used spider takes nearly three times as
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omparison of spidering performan
e on the Corporate OÆ
ers dataset.Ea
h result shows the average per
entage of ea
h 
ompany's web site traversedbefore �nding the goal page. Here, the 4 bin Future spider performs twi
e as well asFo
used, and nearly three times as well as Breadth-First.Spidering Method % Links FollowedOptimal 3%Future (4 bins) 13%Future (3 bins) 22%Future (5 bins) 27%Fo
used 27%Breadth-First 38%
long as Future to �nd the �rst 28 (5%) of the papers. While this resultmay seem insigni�
ant at �rst, its importan
e be
omes more 
lear inthe Corporate OÆ
er experiments des
ribed in the next se
tion.Through our Resear
h Papers experiments, we have shown that ourreinfor
ement learning framework has promise: it signi�
antly outper-forms breadth-�rst sear
h, performs mu
h like a fo
used 
rawler overalland outperforms a fo
used spider in the important early stages. TheCorporate OÆ
ers dataset is more extreme in its reward sparsity, andshows this improved performan
e more dramati
ally.3.6.3. Finding Corporate OÆ
ersTable I shows spidering results on the Corporate OÆ
ers dataset. The
al
ulated �gure is the average per
ent of ea
h 
ompany's web site thespider traversed before �nding the single goal. On average, the four-binFuture spider is able to lo
ate the goal page after traversing only 13%of the hyperlinks. This is twi
e as eÆ
ient as Fo
used, whi
h followsan average of 27% of the hyperlinks before lo
ating the target page. Infurther 
ontrast, Future performs three-times as eÆ
ient as the Breadth-First spider, whi
h follows an average of 38% of the hyperlinks before�nding the goal page.Ea
h spidering run entails lo
ating a single Web page within a 
or-porate web site. In our experiments, the sites ranged from 20 to almost1000 web pages. In 
ontrast to the Resear
h Paper dataset, where thenumber of Web pages per goal page is 23, the Corporate OÆ
ers dataset
ontains 256 web pages per goal page, a signi�
ant in
rease in sparsity.As a result, two instantiations of the Future spider perform signi�
antlybetter than the Fo
used spider. Sin
e Future and Fo
used are otherwise
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al, this added eÆ
ien
y must 
ome from Future's knowledge offuture reward.While the three- and four-bin Future spiders outperform Fo
used,there is a tradeo� between the 
exibility of the 
lassi�er-regressor and
lassi�
ation a

ura
y. Experiments with a �ve-bin 
lassi�er result inworse performan
e|roughly equivalent to the Fo
used spider, followingan average of 27% of available hyperlinks before lo
ating the targetpage. While additional bins 
an provide a stronger basis for Q-valuepredi
tion, they also 
reate a more 
ompli
ated 
lassi�
ation task; morebins generally de
rease 
lassi�
ation a

ura
y. Hen
e, we reason thatour naive Bayes 
lassi�er 
annot take advantage of the additional binin the 5 bin Future spider. Better features and other methods forimproving 
lassi�er a

ura
y (su
h as shrinkage (M
Callum, Rosen-feld, Mit
hell, & Ng, 1998)) should allow the more sensitive multi-bin
lassi�er to perform better.These results indi
ate that when there are many more non-targetpages than target pages, (i.e. reward is sparse), the Future spider's ex-pli
it modeling of future reward signi�
antly in
reases its eÆ
ien
y overthe Fo
used spider. By tuning the tradeo�s appropriately, we should beable to a
hieve in
reased performan
e, even when reward is less sparse.The 
onstru
tion of a topi
-spe
i�
 portal, su
h as Cora, requiresthe lo
ation of large quantities of relevant do
uments. However, su
hdo
uments are often sparsely distributed throughout the Web. As theInternet 
ontinues to grow and domain-spe
i�
 sear
h servi
es be
omemore popular, it will be
ome in
reasingly important that spiders beable to gather on-topi
 do
uments eÆ
iently. The spidering work pre-sented here is an initial step towards 
reating su
h eÆ
ient spidering.We believe that further understanding of the reinfor
ement learningframework and the relaxation of the simplifying assumptions used herewill lead to additional improvements in the future.4. Information Extra
tionInformation extra
tion is 
on
erned with identifying phrases of inter-est in textual data. For many appli
ations, extra
ting items su
h asnames, pla
es, events, dates, and pri
es is a powerful way to summarizethe information relevant to a user's needs. In the 
ase of a domain-spe
i�
 portal, the automati
 identi�
ation of important information
an in
rease the a

ura
y and eÆ
ien
y of a dire
ted query.In Cora we use hidden Markov models (HMMs) to extra
t the �eldsrelevant to 
omputer s
ien
e resear
h papers, su
h as titles, authors,aÆliations and dates. One HMM extra
ts information from ea
h pa-
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eding the main body of the paper). Ase
ond HMM pro
esses the individual referen
es in ea
h paper's refer-en
e se
tion. The extra
ted text segments are used (1) to allow sear
hesover spe
i�
 �elds, (2) to provide useful, e�e
tive presentation of sear
hresults (e.g. showing title in bold), and (3) to mat
h referen
es to papersduring 
itation grouping.Our resear
h interest in HMMs for information extra
tion is parti
u-larly fo
used on learning the appropriate state and transition stru
tureof the models from training data, and estimating model parameterswith labeled and unlabeled data. We show that models with stru
tureslearned from data outperform models built with one state per extra
-tion 
lass. We also demonstrate that using distantly-labeled data forparameter estimation improves extra
tion a

ura
y, but that Baum-Wel
h estimation of model parameters with unlabeled data degradesperforman
e.4.1. Hidden Markov ModelsHidden Markov modeling is a powerful statisti
al ma
hine learningte
hnique that is just beginning to gain use in information extra
tiontasks (e.g. Leek, 1997; Bikel et al., 1997; Freitag & M
Callum, 1999).HMMs o�er the advantages of having strong statisti
al foundationsthat are well-suited to natural language domains and robust handlingof new data. They are also 
omputationally eÆ
ient to develop andevaluate due to the existen
e of established training algorithms. Thedisadvantages of using HMMs are the need for an a priori notion ofthe model topology and, as with any statisti
al te
hnique, a suÆ
ientamount of training data to reliably estimate model parameters.Dis
rete output, �rst-order HMMs are 
omposed of a set of statesQ, with spe
i�ed initial and �nal states qI and qF , a set of transitionsbetween states (q ! q0), and a dis
rete vo
abulary of output symbols� = f�1; �2; : : : ; �Mg. The model generates a stringw = w1w2 : : : wl bybeginning in the initial state, transitioning to a new state, emitting anoutput symbol, transitioning to another state, emitting another symbol,and so on, until a transition is made into the �nal state. The parametersof the model are the transition probabilities P(q ! q0) that one statefollows another and the emission probabilities P(q " �) that a stateemits a parti
ular output symbol. The probability of a string w beingemitted by an HMM M is 
omputed as a sum over all possible pathsby: P(wjM) = Xq1;:::;ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " wk); (3)
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hine Learning 21where q0 and ql+1 are restri
ted to be qI and qF respe
tively, and wl+1 isan end-of-string token. The Forward algorithm 
an be used to 
al
ulatethis probability eÆ
iently (Rabiner, 1989).The observable output of the system is the sequen
e of symbolsthat the states emit, but the underlying state sequen
e itself is hidden.One 
ommon goal of learning problems that use HMMs is to re
overthe state sequen
e V (wjM) that has the highest probability of havingprodu
ed an observation sequen
e:V (wjM)=arg maxq1:::ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " wk): (4)Fortunately, the Viterbi algorithm (Viterbi, 1967) eÆ
iently re
oversthis state sequen
e.4.2. HMMs for Information Extra
tionHidden Markov models provide a natural framework for modeling theprodu
tion of the headers and referen
es of resear
h papers. Theyexpli
itly represent extra
tion 
lasses as states, eÆ
iently model thefrequen
ies of word o

urren
es for ea
h 
lass, and take 
lass sequen
einto a

ount. We want to label ea
h word of a header or referen
e asbelonging to a 
lass su
h as title, author, journal, or keyword. We dothis by modeling the entire header or referen
e (and all of the 
lassesto extra
t) with one HMM. This task varies from the more 
lassi
extra
tion task of identifying a small set of target words from a largedo
ument 
ontaining mostly uninformative text.HMMs may be used for information extra
tion by formulating amodel in the following way: ea
h state is asso
iated with a 
lass thatwe want to extra
t, su
h as title, author or aÆliation. Ea
h state emitswords from a 
lass-spe
i�
 multinomial (unigram) distribution. We 
anlearn the 
lass-spe
i�
 multinomial distributions and the state transi-tion probabilities from training data. In order to label a new header orreferen
e with 
lasses, we treat the words from the header or referen
eas observations and re
over the most-likely state sequen
e with theViterbi algorithm. The state that produ
es ea
h word is the 
lass tagfor that word. An example HMM for headers, annotated with 
lasslabels and transition probabilities, is shown in Figure 7.Hidden Markov models, while relatively new to information extra
-tion, have enjoyed su

ess in related natural language tasks. They havebeen widely used for part-of-spee
h tagging (Kupie
, 1992), and havemore re
ently been applied to topi
 dete
tion and tra
king (Yamron,Carp, Gilli
k, Lowe, & van Mulbregt, 1998) and dialog a
t modeling(Stol
ke, Shriberg, Bates, Co

aro, Jurafsky, Martin, Meteer, Ries, Tay-
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Figure 7. Example HMM for the header of a resear
h paper. Ea
h state emits wordsfrom a 
lass-spe
i�
 multinomial distribution.lor, & Ess-Dykema, 1998). Other systems using HMMs for informationextra
tion in
lude those by Leek (1997), who extra
ts gene names andlo
ations from s
ienti�
 abstra
ts, and the Nymble system (Bikel et al.,1997) for named-entity extra
tion. Unlike our work, these systems donot 
onsider automati
ally determining model stru
ture from data;they either use one state per 
lass, or use hand-built models assem-bled by inspe
ting training examples. Freitag and M
Callum (1999)hand-build multiple HMMs, one for ea
h �eld to be extra
ted, andfo
us on modeling the immediate pre�x, suÆx, and internal stru
tureof ea
h �eld. In 
ontrast, we fo
us on learning the stru
ture of oneHMM to extra
t all the relevant �elds, whi
h in
orporates the observedsequen
es of extra
tion �elds dire
tly in the model.4.2.1. Learning model stru
ture from dataIn order to build an HMM for information extra
tion, we must �rstde
ide how many states the model should 
ontain, and what transitionsbetween states should be allowed. A reasonable initial model is to useone state per 
lass, and to allow transitions from any state to anyother state (a fully-
onne
ted model). However, this model may notbe optimal in all 
ases. When a spe
i�
 hidden sequen
e stru
ture isexpe
ted in the extra
tion domain, we may do better by building amodel with multiple states per 
lass, with only a few transitions out ofea
h state. Su
h a model 
an make �ner distin
tions about the likeli-hood of en
ountering a 
lass at a parti
ular lo
ation in the do
ument,and 
an model spe
i�
 lo
al emission distribution di�eren
es betweenstates of the same 
lass. For example, in Figure 7, there are two statesfor the \publi
ation number" 
lass, whi
h allows the 
lass to exhibitdi�erent transition behavior depending on where in the header the
lass is en
ountered; if a publi
ation number is seen before the title, wewould expe
t transitions from and to a di�erent set of states than if itis seen after the author names. Likewise, the HMM has two states for
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...Figure 8. Example of a maximally spe
i�
 HMM built from four training instan
es,whi
h is used as the starting point for state merging.the \note" 
lass. These two states, although from the same 
lass, maybene�t from di�erent emission distributions, due to the di�erent typesof 
opyright and publi
ation notes that o

ur at the beginning and endof a header.An alternative to simply assigning one state per 
lass is to learnthe model stru
ture from training data. Training data labeled with
lass information 
an be used to build a maximally-spe
i�
 model. Anexample of this model built from just four labeled examples is shownin Figure 8. Ea
h word in the training data is assigned its own state,whi
h transitions to the state of the word that follows it. Ea
h state isasso
iated with the 
lass label of its word token. A transition is pla
edfrom the start state to the �rst state of ea
h training instan
e, as wellas between the last state of ea
h training instan
e and the end state.This model 
an be used as the starting point for a variety of statemerging te
hniques. We propose two simple types of merges that 
anbe used to generalize the maximally-spe
i�
 model. First, \neighbor-merging" 
ombines all states that share a transition and have the same
lass label. As multiple neighbor states with the same 
lass label aremerged into one, a self-transition loop is introdu
ed, whose probabilityrepresents the expe
ted state duration for that 
lass. For example, inFigure 8, the three adja
ent title states from the �rst header wouldbe merged into a single title state, whi
h would have a self-transitionprobability of 2/3.Se
ond, \V-merging" merges any two states that have the same labeland share transitions from or to a 
ommon state. V-merging redu
es thebran
hing fa
tor of the maximally-spe
i�
 model. We apply V-mergingto models that have already undergone neighbor-merging. For example,again in Figure 8, instead of sele
ting from among three transitions fromthe start state into title states, the V-merged model would merge the
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hildren title states into one, so that only one transition from the startstate to the title state would remain. The V-merged model 
an be usedfor extra
tion dire
tly, or more state merges 
an be made automati
allyor by hand to generalize the model further.4.2.2. Labeled, unlabeled, and distantly-labeled dataOn
e a model stru
ture has been sele
ted, the transition and emissionparameters need to be estimated from training data. While obtainingunlabeled training data is generally not too diÆ
ult, a
quiring labeledtraining data is more problemati
. Labeled data is expensive and te-dious to produ
e, sin
e manual e�ort is involved. It is also valuable,sin
e the 
ounts of 
lass transitions N(q ! q0) and the 
ounts of aword o

urring in a 
lass N(q " �) 
an be used to derive maximumlikelihood estimates for the parameters of the HMM:P̂(q ! q0) = N(q ! q0)Ps2QN(q ! s) ; (5)P̂(q " �) = N(q " �)P�2�N(q " �) : (6)Smoothing of the distributions is often ne
essary to avoid probabilitiesof zero for the transitions or emissions that do not o

ur in the trainingdata. Absolute dis
ounting and additive smoothing are examples ofpossible smoothing strategies. Chen and Goodman (1998) provide athorough dis
ussion and 
omparison of di�erent smoothing te
hniques.Unlabeled data, on the other hand, 
an be used with the Baum-Wel
h training algorithm (Baum, 1972) to train model parameters.The Baum-Wel
h algorithm is an iterative Expe
tation-Maximization(EM) algorithm that, given an initial parameter 
on�guration, adjustsmodel parameters to lo
ally maximize the likelihood of unlabeled data.Baum-Wel
h training su�ers from the fa
t that it �nds lo
al maxima,and is thus sensitive to initial parameter settings.A third sour
e of valuable training data is what we refer to asdistantly-labeled data. Sometimes it is possible to �nd data that islabeled for another purpose, but whi
h 
an be partially applied to thedomain at hand. In these 
ases, it may be that only a portion of the la-bels are relevant, but the 
orresponding data 
an still be added into themodel estimation pro
ess in a helpful way. For example, BibTeX �lesare bibliography databases that 
ontain labeled 
itation information.Several of the labels that o

ur in 
itations, su
h as title and author,also o

ur in the headers of papers, and this labeled data 
an be usedin training emission distributions for header extra
tion. However, otherBibTeX �elds are not relevant to the header extra
tion task, and not
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hine Learning 25all of the header �elds o

ur in the BibTeX data. In addition, the datadoes not in
lude any information about sequen
es of 
lasses in headersand therefore 
annot be used for transition distribution estimation.Class emission distributions 
an be trained dire
tly using either thelabeled training data (L), a 
ombination of the labeled and distantly-labeled data (L+D), or a linear interpolation of the labeled and distantly-labeled data (L*D). In the L+D 
ase, the word 
ounts of the labeledand distantly-labeled data are pooled together before deriving the e-mission distributions. In the L*D 
ase, separate emission distributionsare trained for the labeled and distantly-labeled data, and then the twodistributions are interpolated together using a mixture weight derivedfrom Expe
tation-Maximization of the labeled data, where ea
h wordof the labeled data is left out of the maximum likelihood 
al
ulation inturn. These three 
ases are shown below:P̂L(wi) = f(NL(wi))PVi=1NL(wi) (7)P̂L+D(wi) = f(NL(wi) +ND(wi))PVi=1NL(wi) +ND(wi) (8)P̂L�D(wi) = �P̂L(wi) + (1� �)P̂D(wi); (9)where N(wi) is the 
ount of word wi in the 
lass, � is the mixtureweight, and f() represents a smoothing fun
tion, used to avoid prob-abilities of zero for the vo
abulary words that are not observed for aparti
ular 
lass.4.3. Experimental ResultsWe fo
us our information extra
tion experiments on extra
ting relevantinformation from the headers of 
omputer s
ien
e resear
h papers,though the te
hniques des
ribed here apply equally well to referen
eextra
tion. We de�ne the header of a resear
h paper to be all of thewords from the beginning of the paper up to either the �rst se
tion ofthe paper, usually the introdu
tion, or to the end of the �rst page,whi
hever o

urs �rst. The abstra
t is automati
ally lo
ated usingregular expression mat
hing and 
hanged to a single `abstra
t' token.Likewise, an `intro' or `page' token is added to the end of ea
h headerto indi
ate whether a se
tion or page break terminated the header.A few spe
ial 
lasses of words are identi�ed using simple regular ex-pressions and 
onverted to spe
ial identifying tokens: email addresses,web addresses, year numbers, zip 
odes, te
hni
al report numbers, andall other numbers. All pun
tuation, 
ase and newline information isremoved from the text.
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Callum, Nigam, Rennie and SeymoreTable II. Mixture weights for the labeled (L) and distantly-labeled (D) datafor the L*D emission distributions. Mixture weights are derived from Expe
ta-tion-Maximization of the labeled data, where ea
h word of the labeled data is leftout of the maximum likelihood 
al
ulation in turn.Class L D Class L D Class L DAddress 0.861 0.139 Date 0.909 0.091 Note 0.808 0.192AÆliation 0.858 0.142 Email 0.657 0.343 Title 0.329 0.671Author 0.446 0.554 Keyword 0.470 0.530 Web 0.629 0.371
The target 
lasses we wish to identify in
lude the following �f-teen 
ategories: title, author, aÆliation, address, note, email, date,abstra
t, introdu
tion (intro), phone, keywords, URL, degree, publi
a-tion number (pubnum), and page. The abstra
t, intro and page 
lassesare ea
h represented by a state that outputs only the token of that
lass. The degree 
lass 
aptures the language asso
iated with Ph.D.or Master's theses, su
h as \submitted in partial ful�llment of..." and\a thesis by...". The note �eld 
ommonly a

ounts for phrases froma
knowledgements, 
opyright noti
es, and 
itations.A set of resear
h papers were sele
ted at random from the Corarepository. The header of ea
h paper was identi�ed, and a 500-header,23,557 word token training set and a 407-header, 18,863 word token testset were formed. Distantly-labeled training data was a
quired from 176BibTeX �les that were 
olle
ted from the Web. These �les 
onsist of2.4 million words, whi
h 
ontribute to the following nine header 
lasses:address, aÆliation, author, date, email, keywords, note, title, and URL.For ea
h emission distribution training 
ase (L, L+D, L*D), a �xedvo
abulary is derived from all of the words in the training data used.The labeled data results in a 4,914-word vo
abulary, and the labeledand distantly-labeled data together 
ontain 92,426 distin
t words. Ab-solute dis
ounting (Ney, Essen, & Kneser, 1994) is used as the smooth-ing fun
tion. An unknown word token is added to the vo
abularies tomodel out-of-vo
abulary words. Any words in the testing data that arenot in the vo
abulary are mapped to this token. The probability of theunknown word is estimated separately for ea
h 
lass, and is assigned aportion of the dis
ount mass proportional to the fra
tion of singletonwords observed only in the 
urrent 
lass. In the L*D 
ase, the mixtureweight is derived from Expe
tation-Maximization of the labeled data,and indi
ates the relative importan
e of ea
h information sour
e to thepredi
tive abilities of the 
ombined distribution. Mixture weights forthe nine 
lasses with distantly-labeled data are given in Table II. Most
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hine Learning 27Table III. Word extra
tion error rate (%) for models with one state per 
lass whenthe emission parameters are estimated from labeled (L) data, a 
ombination oflabeled and distantly-labeled (L+D) and an interpolation of labeled and distant-ly-labeled (L*D) data. Using the interpolation of the two data sour
es provides thebest extra
tion performan
e.Model # States # Transitions L L+D L*DFull 17 255 37.3 42.7 35.6Self 17 252 14.4 17.1 10.7ML 17 149 9.9 10.8 7.9Smooth 17 255 10.4 11.5 8.2
lasses give a higher weight to the labeled data, with the ex
eption ofthe author, keyword and title 
lasses, whi
h assign more value to thedistantly-labeled data.We build several HMM models, varying model stru
tures and train-ing 
onditions, and test the models by �nding the Viterbi paths forthe test set headers. Performan
e is measured by word 
lassi�
ationerror, whi
h is the per
entage of header words emitted by a state witha di�erent label than the words' true label.4.3.1. Model sele
tion { One state per 
lassThe �rst set of models ea
h use one state per 
lass. Emission distri-butions are trained for ea
h 
lass on either the labeled data (L), the
ombination of the labeled and distantly-labeled data (L+D), or the in-terpolation of the labeled and distantly-labeled data (L*D). Extra
tionresults for these models are reported in Table III.The Full model is a fully-
onne
ted model where all transitions areassigned uniform probabilities. It relies only on the emission distribu-tions to 
hoose the best path through the model, and results in an errorrate of 35.6%. The Self model is similar, ex
ept that the self-transitionprobability is set a

ording to the maximum likelihood estimate fromthe labeled data, with all other transitions set uniformly. This modelbene�ts from the additional information of the expe
ted number ofwords to be emitted by ea
h state, and its error rate drops to 10.7%.The ML model sets all transition parameters to their maximum likeli-hood estimates, and a
hieves the lowest error of 7.9% among this set ofmodels. The Smooth model adds an additional smoothing 
ount of oneto ea
h transition, so that all transitions have non-zero probabilities,but smoothing the transition probabilities does not lower the error rate.For all models, the 
ombination of the labeled and distantly-labeled
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Figure 9. Extra
tion error for multi-state models as states are merged. The dashedlines represent the baseline performan
es of the ML model, trained on all 500 headersand on the same 100 headers as the multi-state models.data (L+D) negatively a�e
ts performan
e relative to the labeled dataresults. However, the interpolation of the distantly-labeled data withthe labeled data (L*D) 
onsistently provides several per
entage pointsde
rease in error over training on the labeled data alone. We will referba
k to the ML model results in the next 
omparisons, as the bestrepresentative of the models with one state per 
lass.4.3.2. Model sele
tion { Deriving stru
ture from dataThe next set of models are learned from data; both the number of statesand the transitions between the states are derived by state mergingte
hniques. We �rst 
onsider models built from a 
ombination of auto-mated and manual te
hniques. Starting from a neighbor-merged modelof 805 states built from 100 randomly sele
ted labeled training headers,states with the same 
lass label are manually merged in an iterativemanner. The manual merges are performed by a domain expert, andonly 100 of the 500 headers are used in order to keep the manual statesele
tion pro
ess manageable. Transition 
ounts are preserved through-out the merges to estimate maximum likelihood transition probabilities.Ea
h state uses its smoothed 
lass emission distribution estimatedfrom the interpolation of the labeled and distantly-labeled data (L*D).Extra
tion performan
e, measured as the number of states de
reases
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tion of Internet Portals with Ma
hine Learning 29Table IV. Word extra
tion error rate (%) for models learned from data 
omparedto the best model that uses one state per 
lass. Emission probabilities are estimatedin three di�erent ways.Model # States # Transitions L L+D L*DML 17 149 9.9 10.8 7.9M-merged 36 164 9.0 9.7 7.3V-merged 155 402 9.7 10.5 7.6
during the merging, is plotted in Figure 9. The dashed lines on the�gure represent the baseline performan
es of the ML model, trained onall 500 headers and on the same 100 headers as the multi-state models.The models with multiple states per 
lass outperform the ML model forboth training 
onditions, parti
ularly when 30 to 40 states are present.In fa
t, when trained on the same amount of data, the multi-statemodels outperform the ML model for any number of states greaterthan one per 
lass and less than 100. The best performan
e of 7.3%is obtained by the model 
ontaining 36 states. We refer to this modelas the M-merged model. This result shows that more 
omplex modelstru
ture bene�ts extra
tion performan
e of HMMs on the header task.We 
ompare this result to the performan
e of a 155-state V-mergedmodel 
reated entirely automati
ally from all of the labeled trainingdata. A summary of the results of the ML model, the M-merged model,and the V-merged model is presented in Table IV. On
e again, theL*D results are superior to the L and L+D results. In addition, boththe M-merged and V-merged models outperform the ML model by astatisti
ally signi�
ant margin in the L*D 
ase, as determined withM
Nemar's test (p < 0:005 ea
h).Table V provides a 
loser look at the errors in ea
h 
lass for theML, M-merged and V-merged models when using emission distributionstrained on labeled (L) and interpolated (L*D) data. Classes for whi
hthere is distantly-labeled training data are indi
ated in bold. For severalof the 
lasses, su
h as title and author, there is a noti
eable de
reasein error when the distantly-labeled data is in
luded. The poorest per-forming individual 
lasses are the degree, publi
ation number, and URL
lasses. The URL 
lass has a parti
ularly high error for the M-mergedmodel, when limited URL 
lass examples in the 100 training headersprobably kept the URL state from having transitions to and from asmany states as ne
essary.
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Callum, Nigam, Rennie and SeymoreTable V. Individual word extra
tion error rates (%) for ea
h 
lass with the ML,M-merged and V-merged models. Classes noted in bold o

ur in distantly-labeleddata. The Abstra
t 
lass 
an have a non-zero error due to emission distributionsmoothing for the other 
lasses. ML M-merged V-mergedClass # words L L*D L L*D L L*DAbstra
t 349 0 0 1.7 1.4 0.3 0.3Address 2058 4.3 4.6 4.9 5.0 4.3 4.5AÆliation 3429 12.7 8.9 12.1 9.4 12.2 8.9Author 2543 4.7 2.4 5.2 2.9 4.8 2.4Date 265 2.6 3.4 3.4 3.0 2.6 3.8Degree 462 24.2 29.2 19.7 26.8 22.9 27.5Email 473 11.0 11.2 12.9 13.5 11.0 11.0Keyword 895 8.4 2.0 2.9 1.2 5.9 1.1Note 4489 15.7 15.4 12.3 11.3 15.5 14.3Phone 160 6.3 6.9 10.6 13.1 6.9 8.1Pubnum 131 35.1 35.1 38.9 39.7 35.1 35.1Title 3177 6.4 1.6 6.6 2.1 7.0 1.8URL 36 19.4 16.7 58.3 58.3 36.1 33.3Overall 18863 9.9 7.9 9.0 7.3 9.7 7.6
4.3.3. In
orporating Unlabeled DataNext, we demonstrate that using unlabeled data for parameter esti-mation does not help 
lassi�
ation a

ura
y for this extra
tion task.Baum-Wel
h training, the standard te
hnique for estimating HMMparameters from unlabeled data, produ
es new transition and emissionparameter values that lo
ally maximize the likelihood of the unlabeleddata. Careful sele
tion of the initial parameter values is thus essentialfor �nding a good lo
al maximum.Five thousand unlabeled headers, 
omposed of 287,770 word tokensare used as training data. Baum-Wel
h training is run on the ML andM-merged models. Model parameters are initialized to the maximumlikelihood transition probabilities from the labeled data and the in-terpolated (L*D) emission distributions. The models are tested underthree di�erent 
onditions; the extra
tion results, as well as the modelperplexities on the test set, are shown in Table VI. Perplexity is ameasure of how well the HMMs model the data; a lower value indi
atesa model that assigns a higher likelihood to the observations from thetest set.
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hine Learning 31Table VI. Word extra
tion error rate (%) and test set perplexity (PP) for the MLand M-merged models after Baum-Wel
h training.ML M-mergedError Perplexity Error PerplexityInitial (L*D) 7.9 475 7.3 486BW-uniform 10.0 374 10.9 363BW-varied 10.6 369 11.9 357
The \Initial" result is the performan
e of the models using theinitial parameter estimates. These results are the same as the L*D
ase in Table IV. After Baum-Wel
h training, the vo
abulary wordsthat do not o

ur in the unlabeled data are given a probability ofzero in the newly-estimated emission distributions. Thus, the new e-mission distributions need to be smoothed; we 
hoose to do this byinterpolating them with the initial parameter estimates. Ea
h state'snewly-estimated emission distribution is linearly interpolated with itsinitial distribution using a mixture weight of �. The \BW-uniform"result shows performan
e when Baum-Wel
h training has been runusing all of the unlabeled training data, and the mixture weights forthe initial and newly-estimated emission distributions are set uniformlyto 0.5 ea
h. In the \BW-varied" 
ase, mixture weights are optimizedseparately for ea
h state. Ninety per
ent of the unlabeled data is usedfor Baum-Wel
h training. The newly-estimated emission distributionsare then interpolated with the initial emission distributions using uni-form mixture weights. One iteration of the Baum-Wel
h algorithm isrun over the remaining 10% of the unlabeled data to assign expe
tedwords 
ounts to ea
h state. These expe
ted word 
ounts are used withthe EM algorithm to set the mixture weights for ea
h state individually.Baum-Wel
h training degrades 
lassi�
ation performan
e for boththe ML and M-merged models. The la
k of improvement in 
lassi�-
ation a

ura
y 
an be partly explained by the fa
t that Baum-Wel
htraining maximizes the likelihood of the unlabeled data, not the 
lassi�-
ation a

ura
y. However, Baum-Wel
h training does result in improvedpredi
tive modeling of the header domain. This improvement is point-ed out through the de
rease in test set perplexity. The perplexity ofthe test set improves over the initial settings with Baum-Wel
h re-estimation, and improves even further with 
areful sele
tion of theemission distribution mixture weights. Merialdo (1994) �nds a sim-ilar e�e
t on tagging a

ura
y when training part-of-spee
h taggers
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h training when starting from well-estimated initialparameter estimates.4.4. Dis
ussionOur experiments show that hiddenMarkov models do well at extra
tingimportant information from the headers of resear
h papers. We a
hievea low error rate of 7.3% over all 
lasses of the headers, and 
lass-spe
i�
 error rates of 2.1% for titles and 2.9% for authors. We havedemonstrated that models that 
ontain multiple states per 
lass doprovide in
reased extra
tion a

ura
y over models that use only onestate per 
lass. This improvement is due to more spe
i�
 transition
ontext modeling that is possible with more states. We expe
t thatit is also bene�
ial to have lo
alized emission distributions, whi
h 
an
apture distribution variations that are dependent on the position ofthe 
lass in the header.Distantly-labeled data has proven to be valuable in providing ro-bust parameter estimates. The interpolation of distantly-labeled dataprovides a 
onsistent de
rease in extra
tion error for headers. In 
aseswhere little labeled training data is available, distantly-labeled data isa helpful resour
e.The high a

ura
y of our header extra
tion results allows Cora topro
ess and present sear
h results e�e
tively. The su

ess of these ex-tra
tion te
hniques is not limited to this single appli
ation, however.For example, applying these te
hniques to referen
e extra
tion a
hievesa word extra
tion error rate of 6.6%. These te
hniques are also ap-pli
able beyond the domain of resear
h papers. We have shown howdistantly-labeled data 
an improve extra
tion a

ura
y; this data isavailable in ele
troni
 form for many other domains. For example, listsof names (with relative frequen
ies) are provided by the U.S. CensusBureau, street names and addresses 
an be found in online phone books,and dis
ussion groups and news sites provide fo
used, topi
-spe
i�

olle
tions of text. These sour
es of data 
an be used to derive 
lass-spe
i�
 words and relative frequen
ies, whi
h 
an then be applied toHMM development for a vast array of domain-spe
i�
 portals.5. Classi�
ation into a Topi
 Hierar
hyTopi
 hierar
hies are an eÆ
ient way to organize, view and explore largequantities of information that would otherwise be 
umbersome. TheU.S. Patent database, Yahoo,MedLine and the Dewey De
imal systemare all examples of topi
 hierar
hies that exist to make informationmore manageable.
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Figure 10. A subset of Cora's 
omputer s
ien
e hierar
hy with the 
omplete keywordlist for ea
h of several 
ategories. These keywords are used to initialize bootstrapping.As Yahoo has shown, a topi
 hierar
hy 
an be a useful, integral partof a portal. Many sear
h engines (e.g. AltaVista, Google and Ly
os)now display hierar
hies on their front page. This feature is equally ormore valuable for domain-spe
i�
 Internet portals. We have 
reated a70-leaf hierar
hy of 
omputer s
ien
e topi
s for Cora, part of whi
h isshown in Figures 1 and 10.A diÆ
ult and time-
onsuming part of 
reating a hierar
hy is popu-lating it with do
uments by pla
ing them into the 
orre
t topi
 nodes.Yahoo has hired large numbers of people to 
ategorize web pages intotheir hierar
hy. The U.S. patent oÆ
e also employs people to performthe job of 
ategorizing patents. In 
ontrast, we automate the pro
essof pla
ing do
uments into leaf nodes of the hierar
hy with learned text
lassi�ers.Traditional text 
lassi�
ation algorithms learn representations froma set of labeled data. Unfortunately, these algorithms typi
ally requireon the order of hundreds of examples per 
lass. Sin
e labeled datais tedious and expensive to obtain, and our 
lass hierar
hy is large,using the traditional supervised approa
h is not feasible. In this se
tionwe des
ribe how to 
reate a text 
lassi�er by bootstrapping withoutany labeled do
uments, using only a few keywords per 
lass and a
lass hierar
hy. Both of these information sour
es are easily obtained.Keywords are qui
ker to generate than even a small number of la-beled do
uments. Many 
lassi�
ation problems naturally 
ome withhierar
hi
ally-organized 
lasses.Bootstrapping is a general framework for iteratively improving alearner using unlabeled data. Bootstrapping is initialized with a smallamount of seed information that 
an take many forms. Ea
h itera-
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Callum, Nigam, Rennie and Seymoretion has two steps: (1) labels are estimated for unlabeled data fromthe 
urrently learned model, and (2) the unlabeled data and theseestimated labels are in
orporated as training data into the learner.Bootstrapping approa
hes have been used for information extra
tion(Rilo� & Jones, 1999), word sense disambiguation (Yarowsky, 1995),and hypertext 
lassi�
ation (Blum & Mit
hell, 1998).Our algorithm for text 
lassi�
ation is initialized by using keywordsto generate preliminary labels for some do
uments by term-mat
hing.The bootstrapping iterations are EM steps that use unlabeled dataand hierar
hi
al shrinkage to estimate parameters of a naive Bayes
lassi�er. An outline of the entire algorithm is presented in Table VII.In experimental results, we show that the learned 
lassi�er has a

ura
ythat approa
hes human agreement levels for this domain.5.1. Initializing Bootstrapping with KeywordsThe initialization step in the bootstrapping pro
ess uses keywords togenerate preliminary labels for as many of the unlabeled do
umentsas possible. For ea
h 
lass a few keywords are generated by a humantrainer. Figure 10 shows examples of the number and type of keywordssele
ted for our experimental domain.We generate preliminary labels from the keywords by term-mat
hingin a rule-list fashion: for ea
h do
ument, we step through the keywordsand pla
e the do
ument in the 
ategory of the �rst keyword that mat
h-es. Sin
e we provide only a few keywords for ea
h 
lass, 
lassi�
ation bykeyword mat
hing is both ina

urate and in
omplete. Keywords tendto provide high-pre
ision and low-re
all; this brittleness will leave manydo
uments unlabeled. Some do
uments will mat
h keywords from thewrong 
lass. In general we expe
t the low re
all of the keywords to bethe dominating fa
tor in overall error. In our experimental domain, forexample, 59% of the unlabeled do
uments do not 
ontain any keywords.5.2. The Bootstrapping IterationsThe goal of the bootstrapping iterations is to generate a naive Bayes
lassi�er from seed information and the inputs: the (ina

urate andin
omplete) preliminary labels, the unlabeled data and the 
lass hi-erar
hy. Many bootstrapping algorithms assign labels to the unlabeleddata, and then 
hoose just a few of these to in
orporate into training atea
h step. In our algorithm, we take a di�erent approa
h. At ea
h boot-strapping step we assign probabilisti
 labels to all the unlabeled data,and in
orporate the entire set into training. Expe
tation-Maximizationis the bootstrapping pro
ess we use to iteratively estimate these prob-abilisti
 labels and the parameters of the naive Bayes 
lassi�er. We
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hine Learning 35Table VII. An outline of the bootstrapping algorithm des
ribed in Se
tions 5.1and 5.2.� Inputs: A 
olle
tion of unlabeled training do
uments, a 
lass hierar
hy, anda few keywords for ea
h 
lass.� Generate preliminary labels for as many of the unlabeled do
uments as possibleby term-mat
hing with the keywords in a rule-list fashion.� Initialize all the �j 's to be uniform along ea
h path from a leaf 
lass to theroot of the 
lass hierar
hy.� Iterate the EM algorithm:� (M-step) Build the maximum likelihood multinomial at ea
h node inthe hierar
hy given the 
lass probability estimates for ea
h do
ument(Equations 10 and 11). Normalize all the �j 's along ea
h path from aleaf 
lass to the root of the 
lass hierar
hy so that they sum to 1.� (E-step) Cal
ulate the expe
tation of the 
lass labels of ea
h do
umentusing the 
lassi�er 
reated in the M-step (Equation 12). In
rement thenew �j 's by attributing ea
h word of held-out data probabilisti
ally tothe an
estors of ea
h 
lass.� Output: A naive Bayes 
lassi�er that takes an unlabeled test do
ument andpredi
ts a 
lass label.begin a detailed des
ription of the bootstrapping iteration with a shortoverview of supervised naive Bayes text 
lassi�
ation, then pro
eed toexplain EM as a bootstrapping pro
ess, and 
on
lude by presentinghierar
hi
al shrinkage, an augmentation to basi
 EM estimation thatuses the 
lass hierar
hy.5.2.1. The naive Bayes frameworkWe build on the framework of multinomial naive Bayes text 
lassi�
a-tion (Lewis, 1998; M
Callum & Nigam, 1998). It is useful to think ofnaive Bayes as estimating the parameters of a probabilisti
 generativemodel for text do
uments. In this model, �rst the 
lass of the do
umentis sele
ted. The words of the do
ument are then generated based on theparameters of a 
lass-spe
i�
 multinomial (i.e. unigram model). Thus,the 
lassi�er parameters 
onsist of the 
lass prior probabilities and the
lass-
onditioned word probabilities. Ea
h 
lass, 
j , has a do
umentfrequen
y relative to all other 
lasses, written P(
j). For every word wtin the vo
abulary V , P(wtj
j) indi
ates the frequen
y that the 
lassi�erexpe
ts word wt to o

ur in do
uments in 
lass 
j .In the standard supervised setting, learning of the parameters isa

omplished using a set of labeled training do
uments, D. To estimate
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Callum, Nigam, Rennie and Seymorethe word probability parameters, P(wtj
j), we 
ount the frequen
y withwhi
h word wt o

urs among all word o

urren
es for do
uments in
lass 
j . We supplement this with Lapla
e smoothing that primes ea
hestimate with a 
ount of one to avoid probabilities of zero. Let N(wt; di)be the 
ount of the number of times word wt o

urs in do
ument di,and de�ne P(
j jdi) 2 f0; 1g, as given by the do
ument's 
lass label.Then, the estimate of the probability of word wt in 
lass 
j is:P(wtj
j)= 1 +Pdi2DN(wt; di)P(
j jdi)jV j+PjV js=1Pdi2DN(ws; di)P(
j jdi) : (10)The 
lass prior probability parameters are set in the same way, wherejCj indi
ates the number of 
lasses:P(
j) = 1 +Pdi2D P(
j jdi)jCj+ jDj : (11)Given an unlabeled do
ument and a 
lassi�er, we determine theprobability that the do
ument belongs in 
lass 
j using Bayes' ruleand the naive Bayes assumption|that the words in a do
ument o

urindependently of ea
h other given the 
lass. If we denote wdi;k to bethe kth word in do
ument di, then 
lassi�
ation be
omes:P(
j jdi) / P(
j)P(dij
j)/ P(
j) jdijYk=1P(wdi;k j
j): (12)Empiri
ally, when given a large number of training do
uments, naiveBayes does a good job of 
lassifying text do
uments (Lewis, 1998).More 
omplete presentations of naive Bayes for text 
lassi�
ation areprovided by Mit
hell (1997) and M
Callum and Nigam (1998).5.2.2. Parameter estimation from unlabeled data with EMIn a standard supervised setting, ea
h do
ument 
omes with a label.In our bootstrapping s
enario, the do
uments are unlabeled, ex
eptfor the preliminary labels from keyword mat
hing that are in
ompleteand not 
ompletely 
orre
t. In order to estimate the parameters ofa naive Bayes 
lassi�er using all the do
uments, we use EM to gen-erate probabilisti
ally-weighted 
lass labels. This results in 
lassi�erparameters that are more likely given all the data.EM is a 
lass of iterative algorithms for maximum likelihood ormaximum a posteriori parameter estimation in problems with in
om-plete data (Dempster, Laird, & Rubin, 1977). Given a model of data
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hine Learning 37generation, and data with some missing values, EM iteratively usesthe 
urrent model to estimate the missing values, and then uses themissing value estimates to improve the model. Using all the availabledata, EM will lo
ally maximize the likelihood of the parameters andgive estimates for the missing values. In our s
enario, the 
lass labelsof the do
uments are the missing values.In implementation, using EM for bootstrapping is an iterative two-step pro
ess. Initially, the parameter estimates are set in the standardnaive Bayes way from just the preliminarily labeled do
uments. Thenwe iterate the E- and M-steps. The E-step 
al
ulates probabilisti
ally-weighted 
lass labels, P(
j jdi), for every do
ument using the 
lassi�erand Equation 12. The M-step estimates new 
lassi�er parameters usingall the do
uments, by Equations 10 and 11, where P(
j jdi) is now
ontinuous, as given by the E-step. We iterate the E- and M-steps untilthe 
lassi�er 
onverges. The initialization step from the preliminarylabels identi�es a starting point for EM to �nd a good lo
al maximafor the 
lassi�
ation task.In previous work (Nigam, M
Callum, Thrun, & Mit
hell, 2000), wehave shown this bootstrapping te
hnique signi�
antly in
reases text
lassi�
ation a

ura
y when given limited amounts of labeled data andlarge amounts of unlabeled data. Here, we use the preliminary labelsto provide the starting point for EM. The EM iterations both 
orre
tthe preliminary labels and 
omplete the labeling for the remainingdo
uments.5.2.3. Improving sparse data estimates with shrinkageEven when provided with a large pool of do
uments, naive Bayes pa-rameter estimation during bootstrapping will su�er from sparse dataproblems be
ause there are so many parameters to estimate (jV jjCj+jCj). Fortunately we 
an further alleviate the sparse data problemby leveraging the 
lass hierar
hy with a statisti
al te
hnique 
alledshrinkage.Consider trying to estimate the probability of the word \intelli-gen
e" in the 
lass NLP. This word should 
learly have non-negligibleprobability there; however, with limited training data we may be un-lu
ky, and the observed frequen
y of \intelligen
e" in NLP may be veryfar from its true expe
ted value. One level up the hierar
hy, however,the Arti�
ial Intelligen
e 
lass 
ontains many more do
uments (the unionof all the 
hildren). There, the probability of the word \intelligen
e"
an be more reliably estimated.Shrinkage 
al
ulates new word probability estimates for ea
h leaf
lass by a weighted average of the estimates on the path from theleaf to the root. The te
hnique balan
es a trade-o� between spe
i�
ity
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Callum, Nigam, Rennie and Seymoreand reliability. Estimates in the leaf are most spe
i�
 but unreliable;further up the hierar
hy estimates are more reliable but unspe
i�
. We
an 
al
ulate mixture weights for the averaging that are guaranteed tomaximize the likelihood of held-out data with the EM algorithm duringbootstrapping.One 
an think of hierar
hi
al shrinkage as a generative model that isslightly augmented from the one des
ribed in Se
tion 5.2.1. As before,a 
lass (leaf) is sele
ted �rst. Then, for ea
h word o

urren
e in thedo
ument, an an
estor of the 
lass (in
luding itself) is sele
ted a

ord-ing to the shrinkage weights. Then, the word itself is 
hosen based onthe multinomial word distribution of that an
estor. If ea
h word inthe training data were labeled with whi
h an
estor was responsible forgenerating it, then estimating the mixture weights would be a simplematter of maximum likelihood estimation from the an
estor emission
ounts. But these an
estor labels are not provided in the training data,and hen
e we use EM to �ll in these missing values. During EM, weestimate these verti
al mixture weights 
on
urrently with the 
lassword probabilities.More formally, let fP1(wtj
j); : : : ;Pk(wtj
j)g be word probabilityestimates, where P1(wtj
j) is the maximum likelihood estimate usingtraining data just in the leaf, P2(wtj
j) is the maximum likelihoodestimate in the parent using the training data from the union of theparent's 
hildren, Pk�1(wtj
j) is the estimate at the root using allthe training data, and Pk(wtj
j) is the uniform estimate (Pk(wtj
j) =1=jV j). The interpolation weights among 
j 's \an
estors" (whi
h we de-�ne to in
lude 
j itself) are written f�1j ; �2j ; : : : ; �kj g, where Pka=1 �aj =1. The new word probability estimate based on shrinkage, denoted�P(wtj
j), is then�P(wtj
j) = �1jP1(wtj
j) + : : : + �kjPk(wtj
j): (13)The �j ve
tors are 
al
ulated by the iterations of EM. In the E-stepwe 
al
ulate for ea
h 
lass 
j and ea
h word of unlabeled held-out dataH, the probability that the word was generated by the ith an
estor.In the M-step, we normalize the sum of these expe
tations to obtainnew mixture weights �j . The held-out do
uments are 
hosen randomlyfrom the training set. Without the use of held-out data, all the mixtureweights would 
on
entrate in the leaves, sin
e the most-spe
i�
 modelwould best �t the training data. EM still 
onverges with this use ofheld-out data; in fa
t, the likelihood surfa
e is 
onvex, and hen
e it isguaranteed to 
onverge to the global maximum.Spe
i�
ally, we begin by initializing the � mixture weights alongea
h path from a leaf to a uniform distribution. Let �aj (wdi;k) denote
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hine Learning 39the probability that the ath an
estor of 
j was used to generate wordo

urren
e wdi;k . The E-step 
onsists of estimating the �'s:�aj (wdi;k) = �ajPa(wdi;k j
j)Pm �mj Pm(wdi;k j
j) : (14)In the M-step, we derive new and guaranteed improved weights, �,by summing and normalizing the �'s:�aj = Pwdi;k2H �aj (wdi;k)P(
j jdi)PbPwdi;k2H �bj (wdi;k)P(
j jdi) : (15)The E- and M-steps iterate until the �'s 
onverge. These weights arethen used to 
al
ulate new shrinkage-based word probability estimates,as in Equation 13. Classi�
ation of new test do
uments is performedjust as before (Equation 12), where the Lapla
e estimates of the wordprobability estimates are repla
ed by shrinkage-based estimates.A more 
omplete des
ription of hierar
hi
al shrinkage for text 
las-si�
ation is presented by M
Callum et al. (1998).5.3. Experimental ResultsIn this se
tion, we provide empiri
al eviden
e that bootstrapping atext 
lassi�er from unlabeled data 
an produ
e a high-a

ura
y text
lassi�er. As a test domain, we use 
omputer s
ien
e resear
h papers.We have 
reated a 70-leaf hierar
hy of 
omputer s
ien
e topi
s, partof whi
h is shown in Figure 10. Creating the hierar
hy took about60 minutes, during whi
h we examined 
onferen
e pro
eedings, andexplored 
omputer s
ien
e sites on the Web. Sele
ting a few keywordsasso
iated with ea
h node took about 90 minutes. A test set was 
reatedby expert hand-labeling of a random sample of 625 resear
h papers fromthe 30,682 papers in the Cora ar
hive at the time we began these exper-iments. Of these, 225 (about one-third) did not �t into any 
ategory,and were dis
arded|resulting in a 400 do
ument test set. Labelingthese do
uments took about six hours. Some of the dis
arded paperswere outside the area of 
omputer s
ien
e (e.g. astrophysi
s papers),but most of these were papers that with a more 
omplete hierar
hywould be 
onsidered 
omputer s
ien
e papers. The 
lass frequen
iesof the data are skewed, but not drasti
ally; on the test set, the mostpopulous 
lass a

ounted for only 7% of the do
uments.Ea
h resear
h paper is represented as the words of the title, author,institution, referen
es, and abstra
t. A detailed des
ription of how thesesegments are automati
ally extra
ted is provided in Se
tion 4. Wordso

urring in fewer than �ve do
uments and words on a standard stoplist
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Callum, Nigam, Rennie and SeymoreTable VIII. Classi�
ation results with di�erent te
hniques: keyword mat
hing,naive Bayes, Bootstrapping and Human agreement. The 
lassi�
ation a

ura
y,and the number of labeled, keyword-mat
hed preliminarily-labeled (P-Labeled), andunlabeled do
uments used by ea
h variant are shown.Method # Labeled # P-Labeled # Unlabeled A

ura
yKeyword Mat
hing | | | 46%Naive Bayes 100 | | 30%Naive Bayes 399 | | 47%Naive Bayes | 12,657 | 47%Bootstrapping | 12,657 | 63%Bootstrapping | 12,657 18,025 66%Human Agreement | | | 72%were dis
arded. No stemming was used. Bootstrapping was performedusing the algorithm outlined in Table VII.Table VIII shows results with di�erent 
lassi�
ation te
hniques used.The rule-list 
lassi�er based on the keywords alone provides 46% a

u-ra
y.5 As an interesting time 
omparison, about 100 do
uments 
ouldhave been labeled in the time it took to generate the keyword lists.Naive Bayes a

ura
y with 100 labeled do
uments is only 30%. It takesabout four times as mu
h labeled training data to provide 
omparablea

ura
y to simple keyword mat
hing; with 399 labeled do
uments(using our test set in a leave-one-out-fashion), naive Bayes rea
hes 47%.This result alone shows that hand-labeling sets of data for supervisedlearning 
an be expensive in 
omparison to alternate te
hniques.When running the bootstrapping algorithm, 12,657 do
uments aregiven preliminary labels by keyword mat
hing. EM and shrinkage in-
orporate the remaining 18,025 do
uments, \�x" the preliminary labelsand leverage the hierar
hy; the resulting a

ura
y is 66%. As an in-teresting 
omparison, agreement on the test set between two humanexperts was 72%. These results show that our bootstrapping algorith-m 
an generate 
ompetitive 
lassi�
ations without the use of largehand-labeled sets of data.A few further experiments reveal some of the inner-workings ofbootstrapping. If we build a naive Bayes 
lassi�er in the standardsupervised way from the 12,657 preliminarily labeled do
uments the
lassi�er gets 47% a

ura
y. This 
orresponds to the performan
e forthe �rst iteration of bootstrapping. Note that this mat
hes the a

ura
y5 The 43% of do
uments in the test set 
ontaining no keywords are not assigned a
lass by the rule-list 
lassi�er, and are assigned the most populous 
lass by default.
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tion of Internet Portals with Ma
hine Learning 41of traditional naive Bayes with 399 labeled training do
uments, butthat it requires less than a quarter the human labeling e�ort. If we runbootstrapping without the 18,025 do
uments left unlabeled by keywordmat
hing, a

ura
y rea
hes 63%. This indi
ates that shrinkage and EMon the preliminarily labeled do
uments is providing substantially morebene�t than the remaining unlabeled do
uments.5.4. Dis
ussionOne explanation for the small impa
t of the 18,025 do
uments leftunlabeled by keyword mat
hing is that many of these do not fall natu-rally into the hierar
hy. Remember that about one-third of the 30,000do
uments fall outside the hierar
hy. Most of these will not be givenpreliminary labels by keyword mat
hing. The presen
e of these outlierdo
uments skews EM parameter estimation. A more in
lusive 
omput-er s
ien
e hierar
hy would allow the unlabeled do
uments to bene�t
lassi�
ation more.However, even without a 
omplete hierar
hy, we 
ould use these do
-uments if we 
ould identify these outliers. Some te
hniques for robustestimation with EM are dis
ussed by M
La
hlan and Basford (1988).One spe
i�
 te
hnique for these text hierar
hies is to add extra leafnodes 
ontaining uniform word distributions to ea
h interior node ofthe hierar
hy in order to 
apture do
uments not belonging in any ofthe prede�ned topi
 leaves. This should allow EM to perform well evenwhen a large per
entage of the do
uments do not fall into the given
lassi�
ation hierar
hy. A similar approa
h is also planned for resear
hin topi
 dete
tion and tra
king (TDT) (Baker, Hofmann, M
Callum,& Yang, 1999). Experimentation with these te
hniques is an area ofongoing resear
h.In other future work we will investigate di�erent ways of initializingbootstrapping, with keywords and otherwise. We plan to re�ne ourprobabilisti
 model to allow for do
uments to be pla
ed in interiorhierar
hy nodes, do
uments to have multiple 
lass assignments, and
lasses to be modeled with multiple mixture 
omponents. We are al-so investigating prin
ipled methods of re-weighting the word featuresfor \semi-supervised" 
lustering that will provide better dis
riminativetraining with unlabeled data.Here, we have shown the appli
ation of our bootstrapping pro
ess topopulating a hierar
hy for Cora. Topi
 hierar
hies are often an integralpart of most portals, although they are typi
ally hand-built and main-tained. The te
hniques demonstrated here are generally appli
able toany topi
 hierar
hy, and should be
ome a powerful tool for populatingtopi
 hierar
hies with a minimum of human e�ort.
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Callum, Nigam, Rennie and Seymore6. Related Work
Several related resear
h proje
ts investigate the gathering and organi-zation of spe
ialized information on the Internet. The WebKB proje
t(Craven, DiPasquo, Freitag, M
Callum, Mit
hell, Nigam, & Slattery,1998) fo
uses on the 
olle
tion and organization of information fromthe Web into knowledge bases. This proje
t also has a strong emphasison using ma
hine learning te
hniques, in
luding text 
lassi�
ation andinformation extra
tion, to promote easy re-use a
ross domains. Twoexample domains, 
omputer s
ien
e departments and 
ompanies, havebeen developed.The CiteSeer proje
t (Lawren
e, Giles, & Bolla
ker, 1999) has alsodeveloped a sear
h engine for 
omputer s
ien
e resear
h papers. It pro-vides similar fun
tionality for sear
hing and linking of resear
h papers.They lo
ate papers by querying sear
h engines with paper-indi
ativewords. Information is extra
ted from paper headers and referen
es byusing an invariants �rst ordering of heuristi
s. They provide a hierar
hyof 
omputer s
ien
e with hubs and authorities rankings on the papers.They provide similarity rankings between resear
h papers based onwords and 
itations. CiteSeer fo
uses on the domain of resear
h papers,and has parti
ularly strong features for autonomous 
itation indexingand the viewing of the textual 
ontext in whi
h a 
itation was made.The New Zealand Digital Library proje
t (Witten, Nevill-Manning,M
Nab, & Cunnningham, 1998) has 
reated publi
ly-available sear
hengines for domains from 
omputer s
ien
e te
hni
al reports to songmelodies. The emphasis of this proje
t is on the 
reation of full-textsear
hable digital libraries, and not on ma
hine learning te
hniquesthat 
an be used to autonomously generate su
h repositories. Theweb sour
es for their libraries are manually identi�ed. No high-levelorganization of the information is given. No information extra
tionis performed and, for the paper repositories, no 
itation linking isprovided.The WHIRL proje
t (Cohen, 1998) is an e�ort to integrate a varietyof topi
-spe
i�
 sour
es into a single domain-spe
i�
 sear
h engine. Twodemonstration domains of 
omputer games and North Ameri
an birdsintegrate information from many sour
es. The emphasis is on provid-ing soft mat
hing for information retrieval sear
hing. Information isextra
ted from web pages by hand-written extra
tion patterns that are
ustomized for ea
h web sour
e. Re
ent WHIRL resear
h (Cohen &Fan, 1999) learns general wrapper extra
tors from examples.
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tion of Internet Portals with Ma
hine Learning 437. Con
lusions and Future WorkThe amount of information available on the Internet 
ontinues to growexponentially. As this trend 
ontinues, we argue that not only will thepubli
 need powerful tools to help them sort through this informa-tion, but the 
reators of these tools will need intelligent te
hniques tohelp them build and maintain these servi
es. This paper has shownthat ma
hine learning te
hniques 
an signi�
antly aid the 
reation andmaintenan
e of domain-spe
i�
 portals and sear
h engines. We havepresented new resear
h in reinfor
ement learning, text 
lassi�
ationand information extra
tion towards this end.In addition to the future work dis
ussed above, we also see many oth-er areas where ma
hine learning 
an further automate the 
onstru
tionand maintenan
e of portals su
h as ours. For example, text 
lassi�
ation
an de
ide whi
h do
uments on the Web are relevant to the domain.Unsupervised 
lustering 
an automati
ally 
reate a topi
 hierar
hy andgenerate keywords (Hofmann & Puzi
ha, 1998; Baker et al., 1999).Citation graph analysis 
an identify seminal papers (Kleinberg, 1999;Chang et al., 1999). We anti
ipate developing a suite of many ma
hinelearning te
hniques so that the 
reation of portals 
an be a

omplishedqui
kly and easily. A
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