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Automating the Constrution of Internet Portalswith Mahine LearningAndrew Kahites MCallum (mallum�s.mu.edu)Just Researh and Carnegie Mellon UniversityKamal Nigam (knigam�s.mu.edu)Carnegie Mellon UniversityJason Rennie (jrennie�ai.mit.edu)Massahusetts Institute of TehnologyKristie Seymore (kseymore�ri.mu.edu)Carnegie Mellon UniversityAbstrat. Domain-spei� internet portals are growing in popularity beausethey gather ontent from the Web and organize it for easy aess, retrieval andsearh. For example, www.ampsearh.om allows omplex queries by age, loation,ost and speialty over summer amps. This funtionality is not possible withgeneral, Web-wide searh engines. Unfortunately these portals are diÆult andtime-onsuming to maintain. This paper advoates the use of mahine learningtehniques to greatly automate the reation and maintenane of domain-spei�Internet portals. We desribe new researh in reinforement learning, informationextration and text lassi�ation that enables eÆient spidering, the identi�ationof informative text segments, and the population of topi hierarhies. Using thesetehniques, we have built a demonstration system: a portal for omputer sieneresearh papers. It already ontains over 50,000 papers and is publily available atwww.ora.justresearh.om. These tehniques are widely appliable to portal reationin other domains.Keywords: spidering, rawling, reinforement learning, information extration, hid-den Markov models, text lassi�ation, naive Bayes, Expetation-Maximization,unlabeled data 1. IntrodutionAs the amount of information on the World Wide Web grows, it be-omes inreasingly diÆult to �nd just what we want. While general-purpose searh engines suh as AltaVista and Google o�er quite usefuloverage, it is often diÆult to get high preision, even for detailedqueries. When we know that we want information of a ertain type,or on a ertain topi, a domain-spei� Internet portal an be a pow-erful tool. A portal is an information gateway that often inludes asearh engine plus additional organization and ontent. Portals areoften, though not always, onentrated on a partiular topi. They 2000 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 MCallum, Nigam, Rennie and Seymoreusually o�er powerful methods for �nding domain-spei� information.For example:� Camp Searh (www.ampsearh.om) allows the user to searh forsummer amps for hildren and adults. The user an query andbrowse the system based on geographi loation, ost, durationand other requirements.� LinuxStart (www.linuxstart.om) provides a learinghouse for Lin-ux resoures. It has a hierarhy of topis and a searh engine overLinux pages.� Movie Review Query Engine (www.mrqe.om) allows the user tosearh for reviews of movies. Type a movie title, and it provideslinks to relevant reviews from newspapers, magazines, and individ-uals from all over the world.� Crafts Searh (www.bella-deor.om) lets the user searh web pagesabout rafts. It also provides searh apabilities over lassi�ed adsand autions of rafts, as well as a browseable topi hierarhy.� Travel-Finder (www.travel-�nder.om) allows the user to searhweb pages about travel, with speial failities for searhing byativity, ategory and loation.Performing any of these searhes with a traditional, general-purposesearh engine would be extremely tedious or impossible. For this rea-son, portals are beoming inreasingly popular. Unfortunately, howev-er, building these portals is often a labor-intensive proess, typiallyrequiring signi�ant and ongoing human e�ort.This artile desribes the use of mahine learning tehniques toautomate several aspets of reating and maintaining portals. Thesetehniques allow portals to be reated quikly with minimal e�ort andare suited for re-use aross many domains. We present new mahinelearning methods for spidering in an eÆient topi-direted manner,extrating topi-relevant information, and building a browseable topihierarhy. These approahes are briey desribed in the following threeparagraphs.Every searh engine or portal must begin with a olletion of dou-ments to index. A spider (or rawler) is an agent that traverses the Web,looking for douments to add to the olletion. When aiming to popu-late a domain-spei� olletion, the spider need not explore the Webindisriminantly, but should explore in a direted fashion in order to�nd domain-relevant douments eÆiently. We set up the spidering taskin a reinforement learning framework (Kaelbling, Littman, & Moore,
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Automating the Constrution of Internet Portals with Mahine Learning 31996), whih allows us to preisely and mathematially de�ne optimalbehavior. This approah provides guidane for designing an intelligentspider that aims to selet hyperlinks optimally. It also indiates howthe agent should learn from delayed reward. Our experimental resultsshow that a reinforement learning spider is twie as eÆient in �ndingdomain-relevant douments as a baseline topi-foused spider and threetimes more eÆient than a spider with a breadth-�rst searh strategy.Extrating harateristi piees of information from the doumentsof a domain-spei� olletion allows the user to searh over these fea-tures in a way that general searh engines annot. Information extra-tion, the proess of automatially �nding ertain ategories of textualsubstrings in a doument, is well suited to this task. We approahinformation extration with a tehnique from statistial language mod-eling and speeh reognition, namely hidden Markov models (Rabiner,1989). We learn model struture and parameters from a ombination oflabeled and distantly-labeled data. Our model extrats �fteen di�erent�elds from spidered douments with 93% auray.Searh engines often provide a hierarhial organization of materialsinto relevant topis; Yahoo is the prototypial example. Automati-ally adding douments into a topi hierarhy an be framed as atext lassi�ation task. We present extensions to a probabilisti textlassi�er known as naive Bayes (Lewis, 1998; MCallum & Nigam,1998). The extensions redue the need for human e�ort in trainingthe lassi�er by using just a few keywords per lass, a lass hierarhyand unlabeled douments in a bootstrapping proess. Use of the result-ing lassi�er plaes douments into a 70-leaf topi hierarhy with 66%auray|performane approahing human agreement levels.The remainder of the paper is organized as follows. We desribethe design of an Internet portal built using these tehniques in thenext setion. The following three setions desribe the mahine learningresearh introdued above and present their experimental results. Wethen disuss related work and present onlusions.2. The Cora PortalWe have brought all the above-desribed mahine learning tehniquestogether in a demonstration system: an Internet portal for omputersiene researh papers, whih we all \Cora." The system is publilyavailable at www.ora.justresearh.om. Not only does it provide key-word searh failities over 50,000 olleted papers, it also plaes thesepapers into a omputer siene topi hierarhy, maps the itation linksbetween papers, provides bibliographi information about eah paper,
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4 MCallum, Nigam, Rennie and Seymore

Figure 1. A sreen shot of the Cora homepage (www.ora.justresearh.om). It hasa searh interfae and a hierarhy interfae.and is growing daily. Our hope is that in addition to providing datasetsand a platform for testing mahine learning researh, this searh enginewill beome a valuable tool for other omputer sientists, and willomplement similar e�orts, suh as CiteSeer (www.sieneindex.om)and the Computing Researh Repository (xxx.lanl.gov/arhive/s).We provide three ways for a user to aess papers in the repository.The �rst is through a topi hierarhy, similar to that provided by Yahoobut ustomized spei�ally for omputer siene researh. It is availableon the homepage of Cora, as shown in Figure 1. This hierarhy washand-onstruted and ontains 70 leaves, varying in depth from oneto three. Using text lassi�ation tehniques, eah researh paper isautomatially plaed into a topi leaf. The topi hierarhy may betraversed by following hyperlinks from the homepage. Eah leaf in thetree ontains a list of papers in that researh topi. The list an besorted by the number of referenes to eah paper, or by the degree to
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Automating the Constrution of Internet Portals with Mahine Learning 5

Figure 2. A sreen shot of the query results page of the Cora searh engine.Extrated paper titles, authors and abstrats are provided at this level.whih the paper is a strong \seminal" paper or a good \survey" paper,as measure by the \authority" and \hub" sore aording to the HITSalgorithm (Kleinberg, 1999; Chang, Cohn, & MCallum, 1999).All papers are indexed into a searh engine available through astandard searh interfae. It supports ommonly-used searhing syntaxfor queries, inluding +, -, and phrase searhing with "". It also allowssearhes restrited to extrated �elds, suh as authors and titles, as inauthor:knuth. Query response time is usually less than a seond. Theresults of searh queries are presented as in Figure 2. While we presentno experimental evidene that the ability to restrit searh to spei�extrated �elds improves searh performane, it is generally aepted
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6 MCallum, Nigam, Rennie and Seymore

Figure 3. A sreen shot of a details page of the Cora searh engine. At this level,all extrated information about a paper is displayed, inluding the itation linking,whih are hyperlinks to other details pages.that suh apability inreases the users' ability to eÆiently �nd whatthey want (Bikel, Miller, Shwartz, & Weishedel, 1997).From both the topi hierarhy and the searh results pages, links areprovided to \details" pages for individual papers. Eah of these pagesshows all the relevant information for a single paper, suh as title and
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Automating the Constrution of Internet Portals with Mahine Learning 7authors, links to the atual postsript paper, and a itation map thatan be traversed either forwards or bakwards. One example of this isshown in Figure 3. The itation map allows a user to �nd details onited papers, as well as papers that ite the detailed paper. The ontextof eah referene is also provided, giving a brief summary of how thereferene is used by the detailed paper. We also provide automatiallyonstruted BibTeX entries, a mehanism for submitting new papersand web sites for spidering, and general Cora information links.Our web logs show that 40% of the page requests are for searhes,27% for details pages (whih show a paper's inoming and outgoing ref-erenes), 30% are for the topi hierarhy nodes and 3% are for BibTeXentries. The logs show that our visitors use the ability to restrit searhto spei� extrated �elds, but not often; about 3% of queries ontain�eld spei�ers; it might have been higher if the front page indiatedthat this feature were available.The olletion and organization of the researh papers for Cora isautomated by drawing upon the mahine learning tehniques desribedin this paper. The �rst step of building any portal is the olletion ofrelevant information from the Web. A spider rawls the Web, startingfrom the home pages of omputer siene departments and laboratoriesand looks for researh papers. Using reinforement learning, our spidereÆiently explores the Web, following links that are more likely tolead to researh papers, and ollets all postsript douments it �nds.1The details of this spidering are desribed in Setion 3. The postsriptdouments are then onverted into plain text by running them throughour own modi�ed version of the publily-available utility ps2asii. Ifthe doument an be reliably determined to have the format of a re-searh paper (i.e. by mathing regular expressions for the headers of anAbstrat or Introdution setion and a Referene setion), it is addedto Cora. Using this system, we have found 50,000 omputer sieneresearh papers, and are ontinuing to spider for even more.The beginning of eah paper is passed through a learned informationextration system that automatially �nds the title, authors, aÆliationsand other important header information. Additionally, the bibliographysetion of eah paper is loated, individual referenes identi�ed, andeah referene automatially broken down into the appropriate �elds,suh as author, title, journal, and date. This information extrationproess is desribed in Setion 4.Using the extrated information, referene and paper mathes aremade|grouping itations to the same paper together, and mathing1 Most omputer siene papers are in postsript format, though we are addingmore formats, suh as PDF.
ora.tex; 18/02/2000; 10:43; p.7



www.manaraa.com

8 MCallum, Nigam, Rennie and Seymoreitations to papers in Cora. Of ourse, many papers that are iteddo not appear in the repository. The mathing algorithm plaes a newitation into a group if it's best word-level math is to a itation alreadyin that group, and the math sore is above a threshold; otherwise, thatitation reates a new group. The word-level math sore is determinedusing the lengths of the itations, and the words ourring in high-ontent �elds (e.g. authors, titles, et.). This mathing proedure is verysimilar to the Baseline Simple method desribed by Giles, Bollaker,and Lawrene (1998). Finally, eah paper is plaed into the omputersiene hierarhy using a text lassi�ation algorithm. This proess isdesribed in Setion 5.The searh engine is reated from the results of the informationextration. Eah researh paper is represented by the extrated title,author, institution, referenes, and abstrat. Contiguous alphanumeriharaters of these segments are onverted into word tokens. No sto-plists or stemming are used. At query time, result mathes are rankedby the weighted log of term frequeny, summed over all query terms.The weight is the inverse of the word frequeny in the entire orpus.When a phrase is inluded, it is treated as a single term. No queryexpansion is performed. Papers are added to the index inrementally,and the indexing time for eah doument is negligible.These steps omplete the proessing of the data neessary to buildCora. The reation of other Internet portals also involves direted spi-dering, information extration, and lassi�ation. The mahine learningtehniques desribed in the following setions are widely appliable tothe onstrution and maintenane of any Internet portal.3. EÆient SpideringSpiders are agents that explore the hyperlink graph of the Web, oftenfor the purpose of �nding douments with whih to populate a portal.Extensive spidering is the key to obtaining high overage by the majorWeb searh engines, suh as AltaVista, Google and Lyos. Sine thegoal of these general-purpose searh engines is to provide searh apa-bilities over the Web as a whole, they aim to �nd as many distint webpages as possible. Suh a goal lends itself to strategies like breadth-�rstsearh. If, on the other hand, the task is to populate a domain-spei�portal, then an intelligent spider should try to avoid hyperlinks thatlead to o�-topi areas, and onentrate on links that lead to doumentsof interest.In Cora, eÆient spidering is a major onern. The majority ofthe pages in omputer siene department web sites do not ontain
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Automating the Constrution of Internet Portals with Mahine Learning 9links to researh papers, but instead are about ourses, homework,shedules and admissions information. Avoiding whole branhes andneighborhoods of departmental web graphs an signi�antly improveeÆieny and inrease the number of researh papers found given a�nite amount of rawling time. We use reinforement learning as thesetting for eÆient spidering in order to provide a formal framework.As in muh other work in reinforement learning, we believe that thebest approah to this problem is to formally de�ne the optimal solutionthat a spider should follow and then to approximate that poliy as bestas possible. This allows us to understand (1) exatly what has beenompromised, and (2) diretions for further work that should improveperformane.Several other systems have also studied spidering, but without aframework de�ning optimal behavior.Arahnid (Menzer, 1997) main-tains a olletion of ompetitive, reproduing and mutating agentsfor �nding information on the Web. Cho, Garia-Molina, and Page(1998) suggest a number of heuristi ordering metris for hoosingwhih link to rawl next when searhing for ertain ategories of webpages. Chakrabarti, van der Berg, and Dom (1999) produe a spiderto loate douments that are textually similar to a set of trainingdouments. This is alled a foused rawler. This spider requires onlya handful of relevant example pages, whereas we also require exampleWeb graphs where suh relevant pages are likely to be found. However,with this additional training data, our framework expliitly apturesknowledge of future reward|the fat that pages leading toward a topipage may have text that is drastially di�erent from the text in topipages.Additionally, there are other systems that use reinforement learn-ing for non-spidering Web tasks. WebWather (Joahims, Freitag, &Mithell, 1997) is a browsing assistant that ats muh like a fousedrawler, reommending links that diret the user toward a "goal." Web-Wather also uses aspets of reinforement learning to deide whihlinks to selet. However, instead of approximating a Q funtion foreah URL, WebWather approximates a Q funtion for eah word andthen, for eah URL, adds the Q funtions that orrespond to the URLand the user's interests. In ontrast, we approximate a Q funtion foreah URL using regression by lassi�ation. LASER (Boyan, Freitag, &Joahims, 1996) is a searh engine that uses a reinforement learningframework to take advantage of the interonnetivity of the Web. Itpropagates reward values bak through the hyperlink graph in order totune its searh engine parameters. In Cora, similar tehniques are usedto ahieve more eÆient spidering.
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10 MCallum, Nigam, Rennie and SeymoreThe spidering algorithm we present here is unique in that it rep-resents and takes advantage of future reward|learning features thatpredit an on-topi doument several hyperlink hops away from theurrent hyperlink. This is partiularly important when reward is s-parse, or in other words, when on-topi douments are few and farbetween. Our experimental results bear this out. In a domain withoutsparse rewards, our reinforement learning spider that represents futurereward performs about the same as a foused spider (both out-performa breadth-�rst searh spider by three-fold). However, in another do-main where reward is more sparse, expliitly representing future rewardinreases eÆieny over a foused spider by a fator of two.3.1. Reinforement LearningThe term \reinforement learning" refers to a framework for learningoptimal deision making from rewards or punishment (Kaelbling et al.,1996). It di�ers from supervised learning in that the learner is nevertold the orret ation for a partiular state, but is simply told howgood or bad the seleted ation was, expressed in the form of a salar\reward." We desribe this framework, and de�ne optimal behavior inthis ontext.A task is de�ned by a set of states, s 2 S, a set of ations, a 2 A,a state-ation transition funtion (mapping state/ation pairs to theresulting state), T : S � A ! S, and a reward funtion (mappingstate/ation pairs to a salar reward), R : S � A ! <. At eah timestep, the learner (also alled the agent) selets an ation, and then asa result is given a reward and transitions to a new state. The goal ofreinforement learning is to learn a poliy, a mapping from states toations, � : S ! A, that maximizes the sum of its reward over time. Themost ommon formulation of \reward over time" is a disounted sum ofrewards into an in�nite future. We use the in�nite-horizon disountedmodel where reward over time is a geometrially disounted sum inwhih the disount , 0 �  < 1, devalues rewards reeived in the future.Aordingly, when following poliy �, we an de�ne the value of eahstate to be: V �(s) = 1Xt=0 trt; (1)where rt is the reward reeived t time steps after starting in state s.The optimal poliy, written �?, is the one that maximizes the value,V �(s), over all states s.In order to learn the optimal poliy, we learn its value funtion, V ?,and its more spei� orrelate, alled Q. Let Q?(s; a) be the value of
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Automating the Constrution of Internet Portals with Mahine Learning 11seleting ation a from state s, and thereafter following the optimalpoliy. This is expressed as:Q?(s; a) = R(s; a) + V ?(T (s; a)): (2)We an now de�ne the optimal poliy in terms of Q? by seletingfrom eah state the ation with the highest expeted future reward:�?(s) = argmaxaQ?(s; a). The seminal work by Bellman (1957) showsthat the optimal poliy an be found straightforwardly by dynamiprogramming.3.2. Spidering as Reinforement LearningAs an aid to understanding how reinforement learning relates to spi-dering, onsider the ommon reinforement learning task of a mouseexploring a maze to �nd several piees of heese. The mouse an performations for moving among the grid squares of the maze. The mousereeives a reward for �nding eah piee of heese. The state is both theposition of the mouse and the loations of the heese piees remainingto be onsumed (sine the heese an only be onsumed and providereward one). Note that the mouse only reeives immediate rewardfor �nding a maze square ontaining heese, but that in order to atoptimally it must hoose ations based on future rewards as well.In the spidering task, the on-topi douments are immediate re-wards, like the piees of heese. The ations are following a partiularhyperlink. The state is the set of on-topi douments that remain to beonsumed, and the set of URLs that have been enountered.2 The statedoes not inlude the urrent \position" of the agent sine a rawler ango next to any URL it has previously enountered. The number ofations is large and dynami, in that it depends on whih pages thespider has visited so far.The most important features of topi-spei� spidering that makereinforement learning an espeially good framework for de�ning theoptimal solution are: (1) performane is measured in terms of rewardover time beause it is better to loate on-topi douments sooner,given time limitations, and (2) the environment presents situations withdelayed reward, in that on-topi douments may be several hyperlinktraversals away from the urrent hoie point.2 It is as if the mouse an jump to any square, as long as it has already visited abordering square. Thus the state is not a single position, but the position and shapeof the boundary.
ora.tex; 18/02/2000; 10:43; p.11



www.manaraa.com

12 MCallum, Nigam, Rennie and Seymore3.3. Pratial ApproximationsThe problem now is how to apply reinforement learning to spideringin suh a way that it an be pratially solved. Unfortunately, the statespae is huge: exponential in the number of on-topi douments on theWeb. The ation spae is also large: the number of unique hyperlinksthat the spider ould possibly visit.In order to make learning feasible we use value funtion approxi-mation. That is, we train a learning algorithm that generalizes arossstates and is able to predit the Q-value of a previously unseen s-tate/ation pair. The spider that emerges from this training proedureeÆiently explores new web graphs by estimating the expeted futurereward assoiated with new hyperlinks using this funtion approxi-mator. The state spae is so unusually large, however, that funtionapproximation annot support dynami programming. Thus, like inwork by Kearns, Mansour, and Ng (2000), we sample from the statespae, and alulate a sum of expeted future reward with an expliitroll-out solution using a model. The use of roll outs for poliy evaluationis also used in TD-1 (Sutton, 1988).We gather training data and build a model onsisting of all the pagesand hyperlinks found by exhaustively spidering a few web sites.3 Byknowing the omplete web graph of the training data, we an easily de-�ne a near-optimal poliy by automati inspetion of the web graph. Wethen exeute that poliy for a �nite number of steps from state/ationpairs for some subset of the states; these exeutions result in a sequeneof immediate rewards. We then assign to these state/ation pairs theQ-value alulated as the disounted sum of the reward sequene. Thesetriplets of state, ation and Q-value beome the training data for ourvalue funtion approximation.In the next two sub-setions we desribe the near-optimal poliy onknown web graphs, and the value funtion approximation.3.4. Near-Optimal Poliy on Known Hyperlink GraphsGiven full knowledge of a hyperlink graph built by exhaustively spi-dering a web site, it is straightforward to speify a near-optimal poliy.The poliy must hoose to follow one hyperlink from among all theunfollowed hyperlinks that it knows about so far, the \fringe." At eahtime step, our near-optimal poliy selets from the fringe the ationthat follows the hyperlink on the path to the losest immediate reward.For example, in Figure 4, the poliy would hoose ation A at time 03 This is the o�-line version of our algorithm; the on-line version would be a formof poliy improvement using roll-outs, as in Tesauro and Galperin (1997).
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Automating the Constrution of Internet Portals with Mahine Learning 13
A B

Figure 4. A representation of spidering spae where arrows are hyperlinks and nodesare web douments. The hexagonal node represents an already-explored node; theirular nodes are unexplored. Filled-in irles denote the presene of immediatereward (target pages). When a spider is given the hoie between an ation thatprovides immediate reward and one that provides future reward, the spider alwaysahieves the maximum disounted reward by hoosing the immediate reward �rst.By �rst following A, the spider ahieves rewards in the sequene 10111. . . . FollowingB �rst only delays the �rst reward: 01111. . . .beause it provides a reward at time 1, where hoosing ation B woulddelay the �rst immediate reward until time 2.This poliy losely approximates the optimal poliy in ases whereall non-zero immediate rewards have the same value. Figure 4 givesan example of a ommon spidering situation where our near-optimalpoliy makes the optimal deision. Here, the spider is given the option oftaking ations A and B. Sine A yields reward sooner, the near-optimalpoliy hooses this ation. This near-optimal poliy often makes theright deision. In fat, in the ase that  � 0:5, the only ase where thepoliy may make a mistake is when two or more ations provide the �rstimmediate reward equidistantly from the fringe. The heuristi poliyarbitrarily selets one of these; in ontrast, the optimal poliy wouldselet the hyperlink leading to the most additional reward, beyond justthe �rst one.We hoose to begin with a near-optimal poliy beause simply spe-ifying the optimal poliy on a Web graph is a non-trivial optimizationproblem.We also believe that diretly approximating the optimal poliywould provide little pratial bene�t, sine our near-optimal poliyaptures the optimal poliy in many of the situations that a spiderenounters.3.5. Value Funtion ApproximationUsing the above poliy, the training proedure generates state/ation/Q-value triples. As in most reinforement learning solutions to problems
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14 MCallum, Nigam, Rennie and Seymorewith large state spaes, these triples then at as training data for su-pervised training of an approximation to the value funtion, V (s), or aQ funtion. To make this approximation we must speify whih subsetof states we use for training, the feature representation of a state andation, and the underlying learning algorithm to map features to Q-values. We hoose a simple but intuitive set of states to use as training,map a state and hyperlink ation to a set of words ourring around thehyperlink, and use naive Bayes to map words into a predited Q-value.For the experiments in this paper, we alulate the value of ournear-optimal poliy for all states where the fringe ontains exatly onehyperlink. Thus, for eah known hyperlink a, we estimate Q(fag; a)by roll-out to generate training data. Considering a larger set of s-tate/ation pairs might make our spidering framework impratial|taking advantage of a larger set would neessitate realulatingQ valuesfor every hyperlink that the spider follows.The features of a state/ation pair are a set of words. Given a hy-perlink ation a, the features are the neighboring words of a on all pre-viously visited pages in state s where hyperlink a ours.4 The preisede�nition of neighboring text is given for eah data set is Setion 3.6,but approximately it means words ourring near to the hyperlink onthe page where it ours. In many ases a unique hyperlink ourson only one page. However, it is not unommon that multiple pagesontain the same hyperlink; in these ases we use the words on eah ofthese multiple pages as our features.Our value funtion approximator takes as inputs these words andgives an estimate of the Q-value. We perform this mapping by astingthis regression problem as lassi�ation (Torgo & Gama, 1997). Wedisretize the disounted sum of future reward values of our trainingdata into bins and treat eah bin as a lass. For eah state/ation pairwe alulate the probabilisti lass membership of eah bin using naiveBayes (whih is desribed in setion 5.2.1). Then the Q-value of a new,unseen hyperlink is estimated by taking a weighted average of eahbins' Q-value, using the probabilisti lass memberships as weights.All of the approximations that we have made are foused on ensuringthat our framework is pratial. The training phase has omputationalomplexity O(N), whereas the spidering phase is O(N logN) (N is thenumber of hyperlinks). The logN term aounts for the need to sort theQ values of those hyperlinks on the fringe. This term ould be eliminat-ed through an approximation suh as disretizing the Q-value spae.Hene, our framework does not signi�antly add to the omputational4 Note that we are ignoring the part of the state that spei�es whih on-topidouments have already been onsumed.
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Automating the Constrution of Internet Portals with Mahine Learning 15omplexity of spidering. An eÆient implementation should �nd Webpage downloads to be the main bottlenek.3.6. Experimental ResultsIn this setion we provide empirial evidene that using reinforementlearning to guide the searh of a spider inreases its eÆieny. We usetwo datasets, the Researh Paper dataset, whih is used in the Coraportal, and also the Corporate OÆers dataset, where the goal is toloate spei� ompany information.3.6.1. Datasets and ProtoolIn August 1998 we ompletely mapped the douments and hyperlinksof the web sites of omputer siene departments at Brown University,Cornell University, University of Pittsburgh and University of Texas.They inlude 53,012 douments and 592,216 hyperlinks. These webpages make up the Researh Paper dataset. The target pages (forwhih a reward of 1 is given) are the 2,263 omputer siene researhpapers. They are identi�ed with 95% preision by a simple hand-odedalgorithm that loates abstrats and referene setions in postsript�les with regular expressions. We perform a series of four test/trainsplits, in whih the data from three universities is used to train a spiderthat is then tested on the fourth. The training data is used for valuefuntion approximation, as desribed in Setion 3.5. In this dataset, theneighboring text for a URL is de�ned as the full text of the page wherethe URL is found with the anhor and nearby text marked speially.Eah spidering run begins at the homepage of the test department. Wereport average performane aross the four test sets.In Deember 1998, we olleted the Corporate OÆers dataset, on-sisting of the omplete web sites of 26 ompanies, totaling 6,643 webpages. The targets in this dataset are the web pages that inlude infor-mation about oÆers and diretors of the ompany. One suh page wasloated by hand for eah ompany, giving a total of 26 target pages.We perform 26 test/train splits where eah ompany's web site formsa test set, while the others are used for training. In this dataset, valuefuntion approximation proeeds by de�ning the neighboring text to beheader and title words, the anhor text, portions of the URL itself (e.g.diretory and �le names) and a small set of words immediately beforeand after the hyperlink. Eah spidering run begins at the homepage ofthe orresponding test ompany.We present results of two di�erent reinforement learning spidersand ompare them to a breadth-�rst-searh spider. The �rst, Fouseduses  = 0, and losely mimis what is known as a \foused rawler."
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Figure 5. The performane of di�erent spidering strategies, averaged over fourtest/train splits. The reinforement learning spiders �nd target douments signi�-antly faster than traditional breadth-�rst searh.(Chakrabarti et al., 1999) This spider employs a binary lassi�er thatdistinguishes between immediately relevant text and other text. Futureuses  = 0:5 and makes use of future reward, representing the Q-funtion with a more �nely-disriminating multi-bin lassi�er. Here,training data is partitioned into bins based on the Q-value of eahhyperlink. We found that a 3-bin lassi�er performed best on the Re-searh Paper data while a 4-bin lassi�er yielded the best results onthe Corporate OÆers data.3.6.2. Finding Researh PapersResults for the Researh Paper dataset are depited in Figures 5 and6, omparing the three-bin Future spider against the two baselines. Thenumber of researh papers found is plotted against the number of pagesvisited, averaged over all four universities.At all times during their searh, both the Future and Foused spiders�nd signi�antly more researh papers than breadth-�rst searh. Onemeasure of performane is the number of hyperlinks followed before75% of the researh papers are found. Both reinforement learners aresigni�antly more eÆient, requiring exploration of less than 16% of the
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Figure 6. The performane of di�erent spidering strategies during the initial stagesof eah spidering run. Here, the Future spider performs best, beause identifyingfuture rewards are ruial.hyperlinks; in omparison, Breadth-�rst requires 48%. This representsa fator of three inrease in spidering eÆieny.However, Future does not always perform as well as or better thanFoused. In Figure 5, after the �rst 50% of the papers are found theFoused spider performs slightly better than Future. This is beausethe system has unovered many links that will give immediate rewardif followed, and the Foused spider reognizes them more aurately. Infuture work we are investigating tehniques for improving lassi�ationto reognize these immediate rewards when the spider uses the largernumber of bins required for regression with future reward.We hypothesize that modeling future reward is more importantwhen immediate reward is more sparse. While there is not signi�antseparation between Foused and Future through most of the run, theearly stages of the run provide a speial environment; reward is verysparse, as most researh papers lie several hyperlinks away from areasthe spider has explored; subsequently, few immediate reward ationsare available. Figure 6 shows the average performane of the spidersduring the initial stages of spidering. We indeed see that Future, aspider whih takes advantage of future rewards knowledge, does betterthan Foused. On average the Foused spider takes nearly three times as
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18 MCallum, Nigam, Rennie and SeymoreTable I. A omparison of spidering performane on the Corporate OÆers dataset.Eah result shows the average perentage of eah ompany's web site traversedbefore �nding the goal page. Here, the 4 bin Future spider performs twie as well asFoused, and nearly three times as well as Breadth-First.Spidering Method % Links FollowedOptimal 3%Future (4 bins) 13%Future (3 bins) 22%Future (5 bins) 27%Foused 27%Breadth-First 38%
long as Future to �nd the �rst 28 (5%) of the papers. While this resultmay seem insigni�ant at �rst, its importane beomes more lear inthe Corporate OÆer experiments desribed in the next setion.Through our Researh Papers experiments, we have shown that ourreinforement learning framework has promise: it signi�antly outper-forms breadth-�rst searh, performs muh like a foused rawler overalland outperforms a foused spider in the important early stages. TheCorporate OÆers dataset is more extreme in its reward sparsity, andshows this improved performane more dramatially.3.6.3. Finding Corporate OÆersTable I shows spidering results on the Corporate OÆers dataset. Thealulated �gure is the average perent of eah ompany's web site thespider traversed before �nding the single goal. On average, the four-binFuture spider is able to loate the goal page after traversing only 13%of the hyperlinks. This is twie as eÆient as Foused, whih followsan average of 27% of the hyperlinks before loating the target page. Infurther ontrast, Future performs three-times as eÆient as the Breadth-First spider, whih follows an average of 38% of the hyperlinks before�nding the goal page.Eah spidering run entails loating a single Web page within a or-porate web site. In our experiments, the sites ranged from 20 to almost1000 web pages. In ontrast to the Researh Paper dataset, where thenumber of Web pages per goal page is 23, the Corporate OÆers datasetontains 256 web pages per goal page, a signi�ant inrease in sparsity.As a result, two instantiations of the Future spider perform signi�antlybetter than the Foused spider. Sine Future and Foused are otherwise
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Automating the Constrution of Internet Portals with Mahine Learning 19idential, this added eÆieny must ome from Future's knowledge offuture reward.While the three- and four-bin Future spiders outperform Foused,there is a tradeo� between the exibility of the lassi�er-regressor andlassi�ation auray. Experiments with a �ve-bin lassi�er result inworse performane|roughly equivalent to the Foused spider, followingan average of 27% of available hyperlinks before loating the targetpage. While additional bins an provide a stronger basis for Q-valuepredition, they also reate a more ompliated lassi�ation task; morebins generally derease lassi�ation auray. Hene, we reason thatour naive Bayes lassi�er annot take advantage of the additional binin the 5 bin Future spider. Better features and other methods forimproving lassi�er auray (suh as shrinkage (MCallum, Rosen-feld, Mithell, & Ng, 1998)) should allow the more sensitive multi-binlassi�er to perform better.These results indiate that when there are many more non-targetpages than target pages, (i.e. reward is sparse), the Future spider's ex-pliit modeling of future reward signi�antly inreases its eÆieny overthe Foused spider. By tuning the tradeo�s appropriately, we should beable to ahieve inreased performane, even when reward is less sparse.The onstrution of a topi-spei� portal, suh as Cora, requiresthe loation of large quantities of relevant douments. However, suhdouments are often sparsely distributed throughout the Web. As theInternet ontinues to grow and domain-spei� searh servies beomemore popular, it will beome inreasingly important that spiders beable to gather on-topi douments eÆiently. The spidering work pre-sented here is an initial step towards reating suh eÆient spidering.We believe that further understanding of the reinforement learningframework and the relaxation of the simplifying assumptions used herewill lead to additional improvements in the future.4. Information ExtrationInformation extration is onerned with identifying phrases of inter-est in textual data. For many appliations, extrating items suh asnames, plaes, events, dates, and pries is a powerful way to summarizethe information relevant to a user's needs. In the ase of a domain-spei� portal, the automati identi�ation of important informationan inrease the auray and eÆieny of a direted query.In Cora we use hidden Markov models (HMMs) to extrat the �eldsrelevant to omputer siene researh papers, suh as titles, authors,aÆliations and dates. One HMM extrats information from eah pa-
ora.tex; 18/02/2000; 10:43; p.19
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20 MCallum, Nigam, Rennie and Seymoreper's header (the words preeding the main body of the paper). Aseond HMM proesses the individual referenes in eah paper's refer-ene setion. The extrated text segments are used (1) to allow searhesover spei� �elds, (2) to provide useful, e�etive presentation of searhresults (e.g. showing title in bold), and (3) to math referenes to papersduring itation grouping.Our researh interest in HMMs for information extration is partiu-larly foused on learning the appropriate state and transition strutureof the models from training data, and estimating model parameterswith labeled and unlabeled data. We show that models with strutureslearned from data outperform models built with one state per extra-tion lass. We also demonstrate that using distantly-labeled data forparameter estimation improves extration auray, but that Baum-Welh estimation of model parameters with unlabeled data degradesperformane.4.1. Hidden Markov ModelsHidden Markov modeling is a powerful statistial mahine learningtehnique that is just beginning to gain use in information extrationtasks (e.g. Leek, 1997; Bikel et al., 1997; Freitag & MCallum, 1999).HMMs o�er the advantages of having strong statistial foundationsthat are well-suited to natural language domains and robust handlingof new data. They are also omputationally eÆient to develop andevaluate due to the existene of established training algorithms. Thedisadvantages of using HMMs are the need for an a priori notion ofthe model topology and, as with any statistial tehnique, a suÆientamount of training data to reliably estimate model parameters.Disrete output, �rst-order HMMs are omposed of a set of statesQ, with spei�ed initial and �nal states qI and qF , a set of transitionsbetween states (q ! q0), and a disrete voabulary of output symbols� = f�1; �2; : : : ; �Mg. The model generates a stringw = w1w2 : : : wl bybeginning in the initial state, transitioning to a new state, emitting anoutput symbol, transitioning to another state, emitting another symbol,and so on, until a transition is made into the �nal state. The parametersof the model are the transition probabilities P(q ! q0) that one statefollows another and the emission probabilities P(q " �) that a stateemits a partiular output symbol. The probability of a string w beingemitted by an HMM M is omputed as a sum over all possible pathsby: P(wjM) = Xq1;:::;ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " wk); (3)
ora.tex; 18/02/2000; 10:43; p.20
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Automating the Constrution of Internet Portals with Mahine Learning 21where q0 and ql+1 are restrited to be qI and qF respetively, and wl+1 isan end-of-string token. The Forward algorithm an be used to alulatethis probability eÆiently (Rabiner, 1989).The observable output of the system is the sequene of symbolsthat the states emit, but the underlying state sequene itself is hidden.One ommon goal of learning problems that use HMMs is to reoverthe state sequene V (wjM) that has the highest probability of havingprodued an observation sequene:V (wjM)=arg maxq1:::ql2Ql l+1Yk=1P(qk�1 ! qk)P(qk " wk): (4)Fortunately, the Viterbi algorithm (Viterbi, 1967) eÆiently reoversthis state sequene.4.2. HMMs for Information ExtrationHidden Markov models provide a natural framework for modeling theprodution of the headers and referenes of researh papers. Theyexpliitly represent extration lasses as states, eÆiently model thefrequenies of word ourrenes for eah lass, and take lass sequeneinto aount. We want to label eah word of a header or referene asbelonging to a lass suh as title, author, journal, or keyword. We dothis by modeling the entire header or referene (and all of the lassesto extrat) with one HMM. This task varies from the more lassiextration task of identifying a small set of target words from a largedoument ontaining mostly uninformative text.HMMs may be used for information extration by formulating amodel in the following way: eah state is assoiated with a lass thatwe want to extrat, suh as title, author or aÆliation. Eah state emitswords from a lass-spei� multinomial (unigram) distribution. We anlearn the lass-spei� multinomial distributions and the state transi-tion probabilities from training data. In order to label a new header orreferene with lasses, we treat the words from the header or refereneas observations and reover the most-likely state sequene with theViterbi algorithm. The state that produes eah word is the lass tagfor that word. An example HMM for headers, annotated with lasslabels and transition probabilities, is shown in Figure 7.Hidden Markov models, while relatively new to information extra-tion, have enjoyed suess in related natural language tasks. They havebeen widely used for part-of-speeh tagging (Kupie, 1992), and havemore reently been applied to topi detetion and traking (Yamron,Carp, Gillik, Lowe, & van Mulbregt, 1998) and dialog at modeling(Stolke, Shriberg, Bates, Coaro, Jurafsky, Martin, Meteer, Ries, Tay-
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Figure 7. Example HMM for the header of a researh paper. Eah state emits wordsfrom a lass-spei� multinomial distribution.lor, & Ess-Dykema, 1998). Other systems using HMMs for informationextration inlude those by Leek (1997), who extrats gene names andloations from sienti� abstrats, and the Nymble system (Bikel et al.,1997) for named-entity extration. Unlike our work, these systems donot onsider automatially determining model struture from data;they either use one state per lass, or use hand-built models assem-bled by inspeting training examples. Freitag and MCallum (1999)hand-build multiple HMMs, one for eah �eld to be extrated, andfous on modeling the immediate pre�x, suÆx, and internal strutureof eah �eld. In ontrast, we fous on learning the struture of oneHMM to extrat all the relevant �elds, whih inorporates the observedsequenes of extration �elds diretly in the model.4.2.1. Learning model struture from dataIn order to build an HMM for information extration, we must �rstdeide how many states the model should ontain, and what transitionsbetween states should be allowed. A reasonable initial model is to useone state per lass, and to allow transitions from any state to anyother state (a fully-onneted model). However, this model may notbe optimal in all ases. When a spei� hidden sequene struture isexpeted in the extration domain, we may do better by building amodel with multiple states per lass, with only a few transitions out ofeah state. Suh a model an make �ner distintions about the likeli-hood of enountering a lass at a partiular loation in the doument,and an model spei� loal emission distribution di�erenes betweenstates of the same lass. For example, in Figure 7, there are two statesfor the \publiation number" lass, whih allows the lass to exhibitdi�erent transition behavior depending on where in the header thelass is enountered; if a publiation number is seen before the title, wewould expet transitions from and to a di�erent set of states than if itis seen after the author names. Likewise, the HMM has two states for
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...Figure 8. Example of a maximally spei� HMM built from four training instanes,whih is used as the starting point for state merging.the \note" lass. These two states, although from the same lass, maybene�t from di�erent emission distributions, due to the di�erent typesof opyright and publiation notes that our at the beginning and endof a header.An alternative to simply assigning one state per lass is to learnthe model struture from training data. Training data labeled withlass information an be used to build a maximally-spei� model. Anexample of this model built from just four labeled examples is shownin Figure 8. Eah word in the training data is assigned its own state,whih transitions to the state of the word that follows it. Eah state isassoiated with the lass label of its word token. A transition is plaedfrom the start state to the �rst state of eah training instane, as wellas between the last state of eah training instane and the end state.This model an be used as the starting point for a variety of statemerging tehniques. We propose two simple types of merges that anbe used to generalize the maximally-spei� model. First, \neighbor-merging" ombines all states that share a transition and have the samelass label. As multiple neighbor states with the same lass label aremerged into one, a self-transition loop is introdued, whose probabilityrepresents the expeted state duration for that lass. For example, inFigure 8, the three adjaent title states from the �rst header wouldbe merged into a single title state, whih would have a self-transitionprobability of 2/3.Seond, \V-merging" merges any two states that have the same labeland share transitions from or to a ommon state. V-merging redues thebranhing fator of the maximally-spei� model. We apply V-mergingto models that have already undergone neighbor-merging. For example,again in Figure 8, instead of seleting from among three transitions fromthe start state into title states, the V-merged model would merge the
ora.tex; 18/02/2000; 10:43; p.23



www.manaraa.com

24 MCallum, Nigam, Rennie and Seymorehildren title states into one, so that only one transition from the startstate to the title state would remain. The V-merged model an be usedfor extration diretly, or more state merges an be made automatiallyor by hand to generalize the model further.4.2.2. Labeled, unlabeled, and distantly-labeled dataOne a model struture has been seleted, the transition and emissionparameters need to be estimated from training data. While obtainingunlabeled training data is generally not too diÆult, aquiring labeledtraining data is more problemati. Labeled data is expensive and te-dious to produe, sine manual e�ort is involved. It is also valuable,sine the ounts of lass transitions N(q ! q0) and the ounts of aword ourring in a lass N(q " �) an be used to derive maximumlikelihood estimates for the parameters of the HMM:P̂(q ! q0) = N(q ! q0)Ps2QN(q ! s) ; (5)P̂(q " �) = N(q " �)P�2�N(q " �) : (6)Smoothing of the distributions is often neessary to avoid probabilitiesof zero for the transitions or emissions that do not our in the trainingdata. Absolute disounting and additive smoothing are examples ofpossible smoothing strategies. Chen and Goodman (1998) provide athorough disussion and omparison of di�erent smoothing tehniques.Unlabeled data, on the other hand, an be used with the Baum-Welh training algorithm (Baum, 1972) to train model parameters.The Baum-Welh algorithm is an iterative Expetation-Maximization(EM) algorithm that, given an initial parameter on�guration, adjustsmodel parameters to loally maximize the likelihood of unlabeled data.Baum-Welh training su�ers from the fat that it �nds loal maxima,and is thus sensitive to initial parameter settings.A third soure of valuable training data is what we refer to asdistantly-labeled data. Sometimes it is possible to �nd data that islabeled for another purpose, but whih an be partially applied to thedomain at hand. In these ases, it may be that only a portion of the la-bels are relevant, but the orresponding data an still be added into themodel estimation proess in a helpful way. For example, BibTeX �lesare bibliography databases that ontain labeled itation information.Several of the labels that our in itations, suh as title and author,also our in the headers of papers, and this labeled data an be usedin training emission distributions for header extration. However, otherBibTeX �elds are not relevant to the header extration task, and not
ora.tex; 18/02/2000; 10:43; p.24
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Automating the Constrution of Internet Portals with Mahine Learning 25all of the header �elds our in the BibTeX data. In addition, the datadoes not inlude any information about sequenes of lasses in headersand therefore annot be used for transition distribution estimation.Class emission distributions an be trained diretly using either thelabeled training data (L), a ombination of the labeled and distantly-labeled data (L+D), or a linear interpolation of the labeled and distantly-labeled data (L*D). In the L+D ase, the word ounts of the labeledand distantly-labeled data are pooled together before deriving the e-mission distributions. In the L*D ase, separate emission distributionsare trained for the labeled and distantly-labeled data, and then the twodistributions are interpolated together using a mixture weight derivedfrom Expetation-Maximization of the labeled data, where eah wordof the labeled data is left out of the maximum likelihood alulation inturn. These three ases are shown below:P̂L(wi) = f(NL(wi))PVi=1NL(wi) (7)P̂L+D(wi) = f(NL(wi) +ND(wi))PVi=1NL(wi) +ND(wi) (8)P̂L�D(wi) = �P̂L(wi) + (1� �)P̂D(wi); (9)where N(wi) is the ount of word wi in the lass, � is the mixtureweight, and f() represents a smoothing funtion, used to avoid prob-abilities of zero for the voabulary words that are not observed for apartiular lass.4.3. Experimental ResultsWe fous our information extration experiments on extrating relevantinformation from the headers of omputer siene researh papers,though the tehniques desribed here apply equally well to refereneextration. We de�ne the header of a researh paper to be all of thewords from the beginning of the paper up to either the �rst setion ofthe paper, usually the introdution, or to the end of the �rst page,whihever ours �rst. The abstrat is automatially loated usingregular expression mathing and hanged to a single `abstrat' token.Likewise, an `intro' or `page' token is added to the end of eah headerto indiate whether a setion or page break terminated the header.A few speial lasses of words are identi�ed using simple regular ex-pressions and onverted to speial identifying tokens: email addresses,web addresses, year numbers, zip odes, tehnial report numbers, andall other numbers. All puntuation, ase and newline information isremoved from the text.
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26 MCallum, Nigam, Rennie and SeymoreTable II. Mixture weights for the labeled (L) and distantly-labeled (D) datafor the L*D emission distributions. Mixture weights are derived from Expeta-tion-Maximization of the labeled data, where eah word of the labeled data is leftout of the maximum likelihood alulation in turn.Class L D Class L D Class L DAddress 0.861 0.139 Date 0.909 0.091 Note 0.808 0.192AÆliation 0.858 0.142 Email 0.657 0.343 Title 0.329 0.671Author 0.446 0.554 Keyword 0.470 0.530 Web 0.629 0.371
The target lasses we wish to identify inlude the following �f-teen ategories: title, author, aÆliation, address, note, email, date,abstrat, introdution (intro), phone, keywords, URL, degree, publia-tion number (pubnum), and page. The abstrat, intro and page lassesare eah represented by a state that outputs only the token of thatlass. The degree lass aptures the language assoiated with Ph.D.or Master's theses, suh as \submitted in partial ful�llment of..." and\a thesis by...". The note �eld ommonly aounts for phrases fromaknowledgements, opyright noties, and itations.A set of researh papers were seleted at random from the Corarepository. The header of eah paper was identi�ed, and a 500-header,23,557 word token training set and a 407-header, 18,863 word token testset were formed. Distantly-labeled training data was aquired from 176BibTeX �les that were olleted from the Web. These �les onsist of2.4 million words, whih ontribute to the following nine header lasses:address, aÆliation, author, date, email, keywords, note, title, and URL.For eah emission distribution training ase (L, L+D, L*D), a �xedvoabulary is derived from all of the words in the training data used.The labeled data results in a 4,914-word voabulary, and the labeledand distantly-labeled data together ontain 92,426 distint words. Ab-solute disounting (Ney, Essen, & Kneser, 1994) is used as the smooth-ing funtion. An unknown word token is added to the voabularies tomodel out-of-voabulary words. Any words in the testing data that arenot in the voabulary are mapped to this token. The probability of theunknown word is estimated separately for eah lass, and is assigned aportion of the disount mass proportional to the fration of singletonwords observed only in the urrent lass. In the L*D ase, the mixtureweight is derived from Expetation-Maximization of the labeled data,and indiates the relative importane of eah information soure to thepreditive abilities of the ombined distribution. Mixture weights forthe nine lasses with distantly-labeled data are given in Table II. Most
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Automating the Constrution of Internet Portals with Mahine Learning 27Table III. Word extration error rate (%) for models with one state per lass whenthe emission parameters are estimated from labeled (L) data, a ombination oflabeled and distantly-labeled (L+D) and an interpolation of labeled and distant-ly-labeled (L*D) data. Using the interpolation of the two data soures provides thebest extration performane.Model # States # Transitions L L+D L*DFull 17 255 37.3 42.7 35.6Self 17 252 14.4 17.1 10.7ML 17 149 9.9 10.8 7.9Smooth 17 255 10.4 11.5 8.2lasses give a higher weight to the labeled data, with the exeption ofthe author, keyword and title lasses, whih assign more value to thedistantly-labeled data.We build several HMM models, varying model strutures and train-ing onditions, and test the models by �nding the Viterbi paths forthe test set headers. Performane is measured by word lassi�ationerror, whih is the perentage of header words emitted by a state witha di�erent label than the words' true label.4.3.1. Model seletion { One state per lassThe �rst set of models eah use one state per lass. Emission distri-butions are trained for eah lass on either the labeled data (L), theombination of the labeled and distantly-labeled data (L+D), or the in-terpolation of the labeled and distantly-labeled data (L*D). Extrationresults for these models are reported in Table III.The Full model is a fully-onneted model where all transitions areassigned uniform probabilities. It relies only on the emission distribu-tions to hoose the best path through the model, and results in an errorrate of 35.6%. The Self model is similar, exept that the self-transitionprobability is set aording to the maximum likelihood estimate fromthe labeled data, with all other transitions set uniformly. This modelbene�ts from the additional information of the expeted number ofwords to be emitted by eah state, and its error rate drops to 10.7%.The ML model sets all transition parameters to their maximum likeli-hood estimates, and ahieves the lowest error of 7.9% among this set ofmodels. The Smooth model adds an additional smoothing ount of oneto eah transition, so that all transitions have non-zero probabilities,but smoothing the transition probabilities does not lower the error rate.For all models, the ombination of the labeled and distantly-labeled
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28 MCallum, Nigam, Rennie and Seymore
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Figure 9. Extration error for multi-state models as states are merged. The dashedlines represent the baseline performanes of the ML model, trained on all 500 headersand on the same 100 headers as the multi-state models.data (L+D) negatively a�ets performane relative to the labeled dataresults. However, the interpolation of the distantly-labeled data withthe labeled data (L*D) onsistently provides several perentage pointsderease in error over training on the labeled data alone. We will referbak to the ML model results in the next omparisons, as the bestrepresentative of the models with one state per lass.4.3.2. Model seletion { Deriving struture from dataThe next set of models are learned from data; both the number of statesand the transitions between the states are derived by state mergingtehniques. We �rst onsider models built from a ombination of auto-mated and manual tehniques. Starting from a neighbor-merged modelof 805 states built from 100 randomly seleted labeled training headers,states with the same lass label are manually merged in an iterativemanner. The manual merges are performed by a domain expert, andonly 100 of the 500 headers are used in order to keep the manual stateseletion proess manageable. Transition ounts are preserved through-out the merges to estimate maximum likelihood transition probabilities.Eah state uses its smoothed lass emission distribution estimatedfrom the interpolation of the labeled and distantly-labeled data (L*D).Extration performane, measured as the number of states dereases
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Automating the Constrution of Internet Portals with Mahine Learning 29Table IV. Word extration error rate (%) for models learned from data omparedto the best model that uses one state per lass. Emission probabilities are estimatedin three di�erent ways.Model # States # Transitions L L+D L*DML 17 149 9.9 10.8 7.9M-merged 36 164 9.0 9.7 7.3V-merged 155 402 9.7 10.5 7.6
during the merging, is plotted in Figure 9. The dashed lines on the�gure represent the baseline performanes of the ML model, trained onall 500 headers and on the same 100 headers as the multi-state models.The models with multiple states per lass outperform the ML model forboth training onditions, partiularly when 30 to 40 states are present.In fat, when trained on the same amount of data, the multi-statemodels outperform the ML model for any number of states greaterthan one per lass and less than 100. The best performane of 7.3%is obtained by the model ontaining 36 states. We refer to this modelas the M-merged model. This result shows that more omplex modelstruture bene�ts extration performane of HMMs on the header task.We ompare this result to the performane of a 155-state V-mergedmodel reated entirely automatially from all of the labeled trainingdata. A summary of the results of the ML model, the M-merged model,and the V-merged model is presented in Table IV. One again, theL*D results are superior to the L and L+D results. In addition, boththe M-merged and V-merged models outperform the ML model by astatistially signi�ant margin in the L*D ase, as determined withMNemar's test (p < 0:005 eah).Table V provides a loser look at the errors in eah lass for theML, M-merged and V-merged models when using emission distributionstrained on labeled (L) and interpolated (L*D) data. Classes for whihthere is distantly-labeled training data are indiated in bold. For severalof the lasses, suh as title and author, there is a notieable dereasein error when the distantly-labeled data is inluded. The poorest per-forming individual lasses are the degree, publiation number, and URLlasses. The URL lass has a partiularly high error for the M-mergedmodel, when limited URL lass examples in the 100 training headersprobably kept the URL state from having transitions to and from asmany states as neessary.
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30 MCallum, Nigam, Rennie and SeymoreTable V. Individual word extration error rates (%) for eah lass with the ML,M-merged and V-merged models. Classes noted in bold our in distantly-labeleddata. The Abstrat lass an have a non-zero error due to emission distributionsmoothing for the other lasses. ML M-merged V-mergedClass # words L L*D L L*D L L*DAbstrat 349 0 0 1.7 1.4 0.3 0.3Address 2058 4.3 4.6 4.9 5.0 4.3 4.5AÆliation 3429 12.7 8.9 12.1 9.4 12.2 8.9Author 2543 4.7 2.4 5.2 2.9 4.8 2.4Date 265 2.6 3.4 3.4 3.0 2.6 3.8Degree 462 24.2 29.2 19.7 26.8 22.9 27.5Email 473 11.0 11.2 12.9 13.5 11.0 11.0Keyword 895 8.4 2.0 2.9 1.2 5.9 1.1Note 4489 15.7 15.4 12.3 11.3 15.5 14.3Phone 160 6.3 6.9 10.6 13.1 6.9 8.1Pubnum 131 35.1 35.1 38.9 39.7 35.1 35.1Title 3177 6.4 1.6 6.6 2.1 7.0 1.8URL 36 19.4 16.7 58.3 58.3 36.1 33.3Overall 18863 9.9 7.9 9.0 7.3 9.7 7.6
4.3.3. Inorporating Unlabeled DataNext, we demonstrate that using unlabeled data for parameter esti-mation does not help lassi�ation auray for this extration task.Baum-Welh training, the standard tehnique for estimating HMMparameters from unlabeled data, produes new transition and emissionparameter values that loally maximize the likelihood of the unlabeleddata. Careful seletion of the initial parameter values is thus essentialfor �nding a good loal maximum.Five thousand unlabeled headers, omposed of 287,770 word tokensare used as training data. Baum-Welh training is run on the ML andM-merged models. Model parameters are initialized to the maximumlikelihood transition probabilities from the labeled data and the in-terpolated (L*D) emission distributions. The models are tested underthree di�erent onditions; the extration results, as well as the modelperplexities on the test set, are shown in Table VI. Perplexity is ameasure of how well the HMMs model the data; a lower value indiatesa model that assigns a higher likelihood to the observations from thetest set.
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Automating the Constrution of Internet Portals with Mahine Learning 31Table VI. Word extration error rate (%) and test set perplexity (PP) for the MLand M-merged models after Baum-Welh training.ML M-mergedError Perplexity Error PerplexityInitial (L*D) 7.9 475 7.3 486BW-uniform 10.0 374 10.9 363BW-varied 10.6 369 11.9 357
The \Initial" result is the performane of the models using theinitial parameter estimates. These results are the same as the L*Dase in Table IV. After Baum-Welh training, the voabulary wordsthat do not our in the unlabeled data are given a probability ofzero in the newly-estimated emission distributions. Thus, the new e-mission distributions need to be smoothed; we hoose to do this byinterpolating them with the initial parameter estimates. Eah state'snewly-estimated emission distribution is linearly interpolated with itsinitial distribution using a mixture weight of �. The \BW-uniform"result shows performane when Baum-Welh training has been runusing all of the unlabeled training data, and the mixture weights forthe initial and newly-estimated emission distributions are set uniformlyto 0.5 eah. In the \BW-varied" ase, mixture weights are optimizedseparately for eah state. Ninety perent of the unlabeled data is usedfor Baum-Welh training. The newly-estimated emission distributionsare then interpolated with the initial emission distributions using uni-form mixture weights. One iteration of the Baum-Welh algorithm isrun over the remaining 10% of the unlabeled data to assign expetedwords ounts to eah state. These expeted word ounts are used withthe EM algorithm to set the mixture weights for eah state individually.Baum-Welh training degrades lassi�ation performane for boththe ML and M-merged models. The lak of improvement in lassi�-ation auray an be partly explained by the fat that Baum-Welhtraining maximizes the likelihood of the unlabeled data, not the lassi�-ation auray. However, Baum-Welh training does result in improvedpreditive modeling of the header domain. This improvement is point-ed out through the derease in test set perplexity. The perplexity ofthe test set improves over the initial settings with Baum-Welh re-estimation, and improves even further with areful seletion of theemission distribution mixture weights. Merialdo (1994) �nds a sim-ilar e�et on tagging auray when training part-of-speeh taggers
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32 MCallum, Nigam, Rennie and Seymoreusing Baum-Welh training when starting from well-estimated initialparameter estimates.4.4. DisussionOur experiments show that hiddenMarkov models do well at extratingimportant information from the headers of researh papers. We ahievea low error rate of 7.3% over all lasses of the headers, and lass-spei� error rates of 2.1% for titles and 2.9% for authors. We havedemonstrated that models that ontain multiple states per lass doprovide inreased extration auray over models that use only onestate per lass. This improvement is due to more spei� transitionontext modeling that is possible with more states. We expet thatit is also bene�ial to have loalized emission distributions, whih anapture distribution variations that are dependent on the position ofthe lass in the header.Distantly-labeled data has proven to be valuable in providing ro-bust parameter estimates. The interpolation of distantly-labeled dataprovides a onsistent derease in extration error for headers. In aseswhere little labeled training data is available, distantly-labeled data isa helpful resoure.The high auray of our header extration results allows Cora toproess and present searh results e�etively. The suess of these ex-tration tehniques is not limited to this single appliation, however.For example, applying these tehniques to referene extration ahievesa word extration error rate of 6.6%. These tehniques are also ap-pliable beyond the domain of researh papers. We have shown howdistantly-labeled data an improve extration auray; this data isavailable in eletroni form for many other domains. For example, listsof names (with relative frequenies) are provided by the U.S. CensusBureau, street names and addresses an be found in online phone books,and disussion groups and news sites provide foused, topi-spei�olletions of text. These soures of data an be used to derive lass-spei� words and relative frequenies, whih an then be applied toHMM development for a vast array of domain-spei� portals.5. Classi�ation into a Topi HierarhyTopi hierarhies are an eÆient way to organize, view and explore largequantities of information that would otherwise be umbersome. TheU.S. Patent database, Yahoo,MedLine and the Dewey Deimal systemare all examples of topi hierarhies that exist to make informationmore manageable.
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Figure 10. A subset of Cora's omputer siene hierarhy with the omplete keywordlist for eah of several ategories. These keywords are used to initialize bootstrapping.As Yahoo has shown, a topi hierarhy an be a useful, integral partof a portal. Many searh engines (e.g. AltaVista, Google and Lyos)now display hierarhies on their front page. This feature is equally ormore valuable for domain-spei� Internet portals. We have reated a70-leaf hierarhy of omputer siene topis for Cora, part of whih isshown in Figures 1 and 10.A diÆult and time-onsuming part of reating a hierarhy is popu-lating it with douments by plaing them into the orret topi nodes.Yahoo has hired large numbers of people to ategorize web pages intotheir hierarhy. The U.S. patent oÆe also employs people to performthe job of ategorizing patents. In ontrast, we automate the proessof plaing douments into leaf nodes of the hierarhy with learned textlassi�ers.Traditional text lassi�ation algorithms learn representations froma set of labeled data. Unfortunately, these algorithms typially requireon the order of hundreds of examples per lass. Sine labeled datais tedious and expensive to obtain, and our lass hierarhy is large,using the traditional supervised approah is not feasible. In this setionwe desribe how to reate a text lassi�er by bootstrapping withoutany labeled douments, using only a few keywords per lass and alass hierarhy. Both of these information soures are easily obtained.Keywords are quiker to generate than even a small number of la-beled douments. Many lassi�ation problems naturally ome withhierarhially-organized lasses.Bootstrapping is a general framework for iteratively improving alearner using unlabeled data. Bootstrapping is initialized with a smallamount of seed information that an take many forms. Eah itera-
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34 MCallum, Nigam, Rennie and Seymoretion has two steps: (1) labels are estimated for unlabeled data fromthe urrently learned model, and (2) the unlabeled data and theseestimated labels are inorporated as training data into the learner.Bootstrapping approahes have been used for information extration(Rilo� & Jones, 1999), word sense disambiguation (Yarowsky, 1995),and hypertext lassi�ation (Blum & Mithell, 1998).Our algorithm for text lassi�ation is initialized by using keywordsto generate preliminary labels for some douments by term-mathing.The bootstrapping iterations are EM steps that use unlabeled dataand hierarhial shrinkage to estimate parameters of a naive Bayeslassi�er. An outline of the entire algorithm is presented in Table VII.In experimental results, we show that the learned lassi�er has auraythat approahes human agreement levels for this domain.5.1. Initializing Bootstrapping with KeywordsThe initialization step in the bootstrapping proess uses keywords togenerate preliminary labels for as many of the unlabeled doumentsas possible. For eah lass a few keywords are generated by a humantrainer. Figure 10 shows examples of the number and type of keywordsseleted for our experimental domain.We generate preliminary labels from the keywords by term-mathingin a rule-list fashion: for eah doument, we step through the keywordsand plae the doument in the ategory of the �rst keyword that math-es. Sine we provide only a few keywords for eah lass, lassi�ation bykeyword mathing is both inaurate and inomplete. Keywords tendto provide high-preision and low-reall; this brittleness will leave manydouments unlabeled. Some douments will math keywords from thewrong lass. In general we expet the low reall of the keywords to bethe dominating fator in overall error. In our experimental domain, forexample, 59% of the unlabeled douments do not ontain any keywords.5.2. The Bootstrapping IterationsThe goal of the bootstrapping iterations is to generate a naive Bayeslassi�er from seed information and the inputs: the (inaurate andinomplete) preliminary labels, the unlabeled data and the lass hi-erarhy. Many bootstrapping algorithms assign labels to the unlabeleddata, and then hoose just a few of these to inorporate into training ateah step. In our algorithm, we take a di�erent approah. At eah boot-strapping step we assign probabilisti labels to all the unlabeled data,and inorporate the entire set into training. Expetation-Maximizationis the bootstrapping proess we use to iteratively estimate these prob-abilisti labels and the parameters of the naive Bayes lassi�er. We
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Automating the Constrution of Internet Portals with Mahine Learning 35Table VII. An outline of the bootstrapping algorithm desribed in Setions 5.1and 5.2.� Inputs: A olletion of unlabeled training douments, a lass hierarhy, anda few keywords for eah lass.� Generate preliminary labels for as many of the unlabeled douments as possibleby term-mathing with the keywords in a rule-list fashion.� Initialize all the �j 's to be uniform along eah path from a leaf lass to theroot of the lass hierarhy.� Iterate the EM algorithm:� (M-step) Build the maximum likelihood multinomial at eah node inthe hierarhy given the lass probability estimates for eah doument(Equations 10 and 11). Normalize all the �j 's along eah path from aleaf lass to the root of the lass hierarhy so that they sum to 1.� (E-step) Calulate the expetation of the lass labels of eah doumentusing the lassi�er reated in the M-step (Equation 12). Inrement thenew �j 's by attributing eah word of held-out data probabilistially tothe anestors of eah lass.� Output: A naive Bayes lassi�er that takes an unlabeled test doument andpredits a lass label.begin a detailed desription of the bootstrapping iteration with a shortoverview of supervised naive Bayes text lassi�ation, then proeed toexplain EM as a bootstrapping proess, and onlude by presentinghierarhial shrinkage, an augmentation to basi EM estimation thatuses the lass hierarhy.5.2.1. The naive Bayes frameworkWe build on the framework of multinomial naive Bayes text lassi�a-tion (Lewis, 1998; MCallum & Nigam, 1998). It is useful to think ofnaive Bayes as estimating the parameters of a probabilisti generativemodel for text douments. In this model, �rst the lass of the doumentis seleted. The words of the doument are then generated based on theparameters of a lass-spei� multinomial (i.e. unigram model). Thus,the lassi�er parameters onsist of the lass prior probabilities and thelass-onditioned word probabilities. Eah lass, j , has a doumentfrequeny relative to all other lasses, written P(j). For every word wtin the voabulary V , P(wtjj) indiates the frequeny that the lassi�erexpets word wt to our in douments in lass j .In the standard supervised setting, learning of the parameters isaomplished using a set of labeled training douments, D. To estimate
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36 MCallum, Nigam, Rennie and Seymorethe word probability parameters, P(wtjj), we ount the frequeny withwhih word wt ours among all word ourrenes for douments inlass j . We supplement this with Laplae smoothing that primes eahestimate with a ount of one to avoid probabilities of zero. Let N(wt; di)be the ount of the number of times word wt ours in doument di,and de�ne P(j jdi) 2 f0; 1g, as given by the doument's lass label.Then, the estimate of the probability of word wt in lass j is:P(wtjj)= 1 +Pdi2DN(wt; di)P(j jdi)jV j+PjV js=1Pdi2DN(ws; di)P(j jdi) : (10)The lass prior probability parameters are set in the same way, wherejCj indiates the number of lasses:P(j) = 1 +Pdi2D P(j jdi)jCj+ jDj : (11)Given an unlabeled doument and a lassi�er, we determine theprobability that the doument belongs in lass j using Bayes' ruleand the naive Bayes assumption|that the words in a doument ourindependently of eah other given the lass. If we denote wdi;k to bethe kth word in doument di, then lassi�ation beomes:P(j jdi) / P(j)P(dijj)/ P(j) jdijYk=1P(wdi;k jj): (12)Empirially, when given a large number of training douments, naiveBayes does a good job of lassifying text douments (Lewis, 1998).More omplete presentations of naive Bayes for text lassi�ation areprovided by Mithell (1997) and MCallum and Nigam (1998).5.2.2. Parameter estimation from unlabeled data with EMIn a standard supervised setting, eah doument omes with a label.In our bootstrapping senario, the douments are unlabeled, exeptfor the preliminary labels from keyword mathing that are inompleteand not ompletely orret. In order to estimate the parameters ofa naive Bayes lassi�er using all the douments, we use EM to gen-erate probabilistially-weighted lass labels. This results in lassi�erparameters that are more likely given all the data.EM is a lass of iterative algorithms for maximum likelihood ormaximum a posteriori parameter estimation in problems with inom-plete data (Dempster, Laird, & Rubin, 1977). Given a model of data
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Automating the Constrution of Internet Portals with Mahine Learning 37generation, and data with some missing values, EM iteratively usesthe urrent model to estimate the missing values, and then uses themissing value estimates to improve the model. Using all the availabledata, EM will loally maximize the likelihood of the parameters andgive estimates for the missing values. In our senario, the lass labelsof the douments are the missing values.In implementation, using EM for bootstrapping is an iterative two-step proess. Initially, the parameter estimates are set in the standardnaive Bayes way from just the preliminarily labeled douments. Thenwe iterate the E- and M-steps. The E-step alulates probabilistially-weighted lass labels, P(j jdi), for every doument using the lassi�erand Equation 12. The M-step estimates new lassi�er parameters usingall the douments, by Equations 10 and 11, where P(j jdi) is nowontinuous, as given by the E-step. We iterate the E- and M-steps untilthe lassi�er onverges. The initialization step from the preliminarylabels identi�es a starting point for EM to �nd a good loal maximafor the lassi�ation task.In previous work (Nigam, MCallum, Thrun, & Mithell, 2000), wehave shown this bootstrapping tehnique signi�antly inreases textlassi�ation auray when given limited amounts of labeled data andlarge amounts of unlabeled data. Here, we use the preliminary labelsto provide the starting point for EM. The EM iterations both orretthe preliminary labels and omplete the labeling for the remainingdouments.5.2.3. Improving sparse data estimates with shrinkageEven when provided with a large pool of douments, naive Bayes pa-rameter estimation during bootstrapping will su�er from sparse dataproblems beause there are so many parameters to estimate (jV jjCj+jCj). Fortunately we an further alleviate the sparse data problemby leveraging the lass hierarhy with a statistial tehnique alledshrinkage.Consider trying to estimate the probability of the word \intelli-gene" in the lass NLP. This word should learly have non-negligibleprobability there; however, with limited training data we may be un-luky, and the observed frequeny of \intelligene" in NLP may be veryfar from its true expeted value. One level up the hierarhy, however,the Arti�ial Intelligene lass ontains many more douments (the unionof all the hildren). There, the probability of the word \intelligene"an be more reliably estimated.Shrinkage alulates new word probability estimates for eah leaflass by a weighted average of the estimates on the path from theleaf to the root. The tehnique balanes a trade-o� between spei�ity
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38 MCallum, Nigam, Rennie and Seymoreand reliability. Estimates in the leaf are most spei� but unreliable;further up the hierarhy estimates are more reliable but unspei�. Wean alulate mixture weights for the averaging that are guaranteed tomaximize the likelihood of held-out data with the EM algorithm duringbootstrapping.One an think of hierarhial shrinkage as a generative model that isslightly augmented from the one desribed in Setion 5.2.1. As before,a lass (leaf) is seleted �rst. Then, for eah word ourrene in thedoument, an anestor of the lass (inluding itself) is seleted aord-ing to the shrinkage weights. Then, the word itself is hosen based onthe multinomial word distribution of that anestor. If eah word inthe training data were labeled with whih anestor was responsible forgenerating it, then estimating the mixture weights would be a simplematter of maximum likelihood estimation from the anestor emissionounts. But these anestor labels are not provided in the training data,and hene we use EM to �ll in these missing values. During EM, weestimate these vertial mixture weights onurrently with the lassword probabilities.More formally, let fP1(wtjj); : : : ;Pk(wtjj)g be word probabilityestimates, where P1(wtjj) is the maximum likelihood estimate usingtraining data just in the leaf, P2(wtjj) is the maximum likelihoodestimate in the parent using the training data from the union of theparent's hildren, Pk�1(wtjj) is the estimate at the root using allthe training data, and Pk(wtjj) is the uniform estimate (Pk(wtjj) =1=jV j). The interpolation weights among j 's \anestors" (whih we de-�ne to inlude j itself) are written f�1j ; �2j ; : : : ; �kj g, where Pka=1 �aj =1. The new word probability estimate based on shrinkage, denoted�P(wtjj), is then�P(wtjj) = �1jP1(wtjj) + : : : + �kjPk(wtjj): (13)The �j vetors are alulated by the iterations of EM. In the E-stepwe alulate for eah lass j and eah word of unlabeled held-out dataH, the probability that the word was generated by the ith anestor.In the M-step, we normalize the sum of these expetations to obtainnew mixture weights �j . The held-out douments are hosen randomlyfrom the training set. Without the use of held-out data, all the mixtureweights would onentrate in the leaves, sine the most-spei� modelwould best �t the training data. EM still onverges with this use ofheld-out data; in fat, the likelihood surfae is onvex, and hene it isguaranteed to onverge to the global maximum.Spei�ally, we begin by initializing the � mixture weights alongeah path from a leaf to a uniform distribution. Let �aj (wdi;k) denote
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Automating the Constrution of Internet Portals with Mahine Learning 39the probability that the ath anestor of j was used to generate wordourrene wdi;k . The E-step onsists of estimating the �'s:�aj (wdi;k) = �ajPa(wdi;k jj)Pm �mj Pm(wdi;k jj) : (14)In the M-step, we derive new and guaranteed improved weights, �,by summing and normalizing the �'s:�aj = Pwdi;k2H �aj (wdi;k)P(j jdi)PbPwdi;k2H �bj (wdi;k)P(j jdi) : (15)The E- and M-steps iterate until the �'s onverge. These weights arethen used to alulate new shrinkage-based word probability estimates,as in Equation 13. Classi�ation of new test douments is performedjust as before (Equation 12), where the Laplae estimates of the wordprobability estimates are replaed by shrinkage-based estimates.A more omplete desription of hierarhial shrinkage for text las-si�ation is presented by MCallum et al. (1998).5.3. Experimental ResultsIn this setion, we provide empirial evidene that bootstrapping atext lassi�er from unlabeled data an produe a high-auray textlassi�er. As a test domain, we use omputer siene researh papers.We have reated a 70-leaf hierarhy of omputer siene topis, partof whih is shown in Figure 10. Creating the hierarhy took about60 minutes, during whih we examined onferene proeedings, andexplored omputer siene sites on the Web. Seleting a few keywordsassoiated with eah node took about 90 minutes. A test set was reatedby expert hand-labeling of a random sample of 625 researh papers fromthe 30,682 papers in the Cora arhive at the time we began these exper-iments. Of these, 225 (about one-third) did not �t into any ategory,and were disarded|resulting in a 400 doument test set. Labelingthese douments took about six hours. Some of the disarded paperswere outside the area of omputer siene (e.g. astrophysis papers),but most of these were papers that with a more omplete hierarhywould be onsidered omputer siene papers. The lass frequeniesof the data are skewed, but not drastially; on the test set, the mostpopulous lass aounted for only 7% of the douments.Eah researh paper is represented as the words of the title, author,institution, referenes, and abstrat. A detailed desription of how thesesegments are automatially extrated is provided in Setion 4. Wordsourring in fewer than �ve douments and words on a standard stoplist
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40 MCallum, Nigam, Rennie and SeymoreTable VIII. Classi�ation results with di�erent tehniques: keyword mathing,naive Bayes, Bootstrapping and Human agreement. The lassi�ation auray,and the number of labeled, keyword-mathed preliminarily-labeled (P-Labeled), andunlabeled douments used by eah variant are shown.Method # Labeled # P-Labeled # Unlabeled AurayKeyword Mathing | | | 46%Naive Bayes 100 | | 30%Naive Bayes 399 | | 47%Naive Bayes | 12,657 | 47%Bootstrapping | 12,657 | 63%Bootstrapping | 12,657 18,025 66%Human Agreement | | | 72%were disarded. No stemming was used. Bootstrapping was performedusing the algorithm outlined in Table VII.Table VIII shows results with di�erent lassi�ation tehniques used.The rule-list lassi�er based on the keywords alone provides 46% au-ray.5 As an interesting time omparison, about 100 douments ouldhave been labeled in the time it took to generate the keyword lists.Naive Bayes auray with 100 labeled douments is only 30%. It takesabout four times as muh labeled training data to provide omparableauray to simple keyword mathing; with 399 labeled douments(using our test set in a leave-one-out-fashion), naive Bayes reahes 47%.This result alone shows that hand-labeling sets of data for supervisedlearning an be expensive in omparison to alternate tehniques.When running the bootstrapping algorithm, 12,657 douments aregiven preliminary labels by keyword mathing. EM and shrinkage in-orporate the remaining 18,025 douments, \�x" the preliminary labelsand leverage the hierarhy; the resulting auray is 66%. As an in-teresting omparison, agreement on the test set between two humanexperts was 72%. These results show that our bootstrapping algorith-m an generate ompetitive lassi�ations without the use of largehand-labeled sets of data.A few further experiments reveal some of the inner-workings ofbootstrapping. If we build a naive Bayes lassi�er in the standardsupervised way from the 12,657 preliminarily labeled douments thelassi�er gets 47% auray. This orresponds to the performane forthe �rst iteration of bootstrapping. Note that this mathes the auray5 The 43% of douments in the test set ontaining no keywords are not assigned alass by the rule-list lassi�er, and are assigned the most populous lass by default.
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Automating the Constrution of Internet Portals with Mahine Learning 41of traditional naive Bayes with 399 labeled training douments, butthat it requires less than a quarter the human labeling e�ort. If we runbootstrapping without the 18,025 douments left unlabeled by keywordmathing, auray reahes 63%. This indiates that shrinkage and EMon the preliminarily labeled douments is providing substantially morebene�t than the remaining unlabeled douments.5.4. DisussionOne explanation for the small impat of the 18,025 douments leftunlabeled by keyword mathing is that many of these do not fall natu-rally into the hierarhy. Remember that about one-third of the 30,000douments fall outside the hierarhy. Most of these will not be givenpreliminary labels by keyword mathing. The presene of these outlierdouments skews EM parameter estimation. A more inlusive omput-er siene hierarhy would allow the unlabeled douments to bene�tlassi�ation more.However, even without a omplete hierarhy, we ould use these do-uments if we ould identify these outliers. Some tehniques for robustestimation with EM are disussed by MLahlan and Basford (1988).One spei� tehnique for these text hierarhies is to add extra leafnodes ontaining uniform word distributions to eah interior node ofthe hierarhy in order to apture douments not belonging in any ofthe prede�ned topi leaves. This should allow EM to perform well evenwhen a large perentage of the douments do not fall into the givenlassi�ation hierarhy. A similar approah is also planned for researhin topi detetion and traking (TDT) (Baker, Hofmann, MCallum,& Yang, 1999). Experimentation with these tehniques is an area ofongoing researh.In other future work we will investigate di�erent ways of initializingbootstrapping, with keywords and otherwise. We plan to re�ne ourprobabilisti model to allow for douments to be plaed in interiorhierarhy nodes, douments to have multiple lass assignments, andlasses to be modeled with multiple mixture omponents. We are al-so investigating prinipled methods of re-weighting the word featuresfor \semi-supervised" lustering that will provide better disriminativetraining with unlabeled data.Here, we have shown the appliation of our bootstrapping proess topopulating a hierarhy for Cora. Topi hierarhies are often an integralpart of most portals, although they are typially hand-built and main-tained. The tehniques demonstrated here are generally appliable toany topi hierarhy, and should beome a powerful tool for populatingtopi hierarhies with a minimum of human e�ort.
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42 MCallum, Nigam, Rennie and Seymore6. Related Work
Several related researh projets investigate the gathering and organi-zation of speialized information on the Internet. The WebKB projet(Craven, DiPasquo, Freitag, MCallum, Mithell, Nigam, & Slattery,1998) fouses on the olletion and organization of information fromthe Web into knowledge bases. This projet also has a strong emphasison using mahine learning tehniques, inluding text lassi�ation andinformation extration, to promote easy re-use aross domains. Twoexample domains, omputer siene departments and ompanies, havebeen developed.The CiteSeer projet (Lawrene, Giles, & Bollaker, 1999) has alsodeveloped a searh engine for omputer siene researh papers. It pro-vides similar funtionality for searhing and linking of researh papers.They loate papers by querying searh engines with paper-indiativewords. Information is extrated from paper headers and referenes byusing an invariants �rst ordering of heuristis. They provide a hierarhyof omputer siene with hubs and authorities rankings on the papers.They provide similarity rankings between researh papers based onwords and itations. CiteSeer fouses on the domain of researh papers,and has partiularly strong features for autonomous itation indexingand the viewing of the textual ontext in whih a itation was made.The New Zealand Digital Library projet (Witten, Nevill-Manning,MNab, & Cunnningham, 1998) has reated publily-available searhengines for domains from omputer siene tehnial reports to songmelodies. The emphasis of this projet is on the reation of full-textsearhable digital libraries, and not on mahine learning tehniquesthat an be used to autonomously generate suh repositories. Theweb soures for their libraries are manually identi�ed. No high-levelorganization of the information is given. No information extrationis performed and, for the paper repositories, no itation linking isprovided.The WHIRL projet (Cohen, 1998) is an e�ort to integrate a varietyof topi-spei� soures into a single domain-spei� searh engine. Twodemonstration domains of omputer games and North Amerian birdsintegrate information from many soures. The emphasis is on provid-ing soft mathing for information retrieval searhing. Information isextrated from web pages by hand-written extration patterns that areustomized for eah web soure. Reent WHIRL researh (Cohen &Fan, 1999) learns general wrapper extrators from examples.
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Automating the Constrution of Internet Portals with Mahine Learning 437. Conlusions and Future WorkThe amount of information available on the Internet ontinues to growexponentially. As this trend ontinues, we argue that not only will thepubli need powerful tools to help them sort through this informa-tion, but the reators of these tools will need intelligent tehniques tohelp them build and maintain these servies. This paper has shownthat mahine learning tehniques an signi�antly aid the reation andmaintenane of domain-spei� portals and searh engines. We havepresented new researh in reinforement learning, text lassi�ationand information extration towards this end.In addition to the future work disussed above, we also see many oth-er areas where mahine learning an further automate the onstrutionand maintenane of portals suh as ours. For example, text lassi�ationan deide whih douments on the Web are relevant to the domain.Unsupervised lustering an automatially reate a topi hierarhy andgenerate keywords (Hofmann & Puziha, 1998; Baker et al., 1999).Citation graph analysis an identify seminal papers (Kleinberg, 1999;Chang et al., 1999). We antiipate developing a suite of many mahinelearning tehniques so that the reation of portals an be aomplishedquikly and easily. AknowledgementsMost of the work in this paper was performed while all the authors wereat Just Researh. Kamal Nigam was supported in part by the DARPAHPKB program under ontrat F30602-97-1-0215.ReferenesBaker, D., Hofmann, T., MCallum, A., & Yang, Y. (1999). A hierarhi-al probabilisti model for novelty detetion in text. Teh. rep., JustResearh. http://www.s.mu.edu/�mallum.Baum, L. E. (1972). An inequality and assoiated maximization tehniquein statistial estimation of probabilisti funtions of a Markov proess.Inequalities, 3, 1{8.Bellman, R. E. (1957). Dynami Programming. Prineton University Press,Prineton, NJ.Bikel, D. M., Miller, S., Shwartz, R., & Weishedel, R. (1997). Nymble:a high-performane learning name-�nder. In Proedings of the FifthConferene on Applied Natural Language Proessing (ANLP-97), pp.194{201.
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